*“未指定的电力来源”或“未指定的来源”是指在进行交易时不是指定来源的电源来采购电力。通过能源不平衡市场或市场运营商管理的其他集中式市场进口,出售,分配或分配给该州的最终用户被认为是未指定的来源。这些来源用于使用OAR 340-215- 0120(2)(a)中的发射因子:计算未指定功率发射的发射因子为0.428吨CO2E/MWH。
近年来,木质复合材料凭借其可持续性及固有的层状多孔结构,在电磁干扰(EMI)屏蔽领域受到了广泛关注。木材的通道结构常用于负载高导电材料以提高木质复合材料的EMI屏蔽性能,但如何利用纯木材制备超薄EMI屏蔽材料的研究很少。本文首先通过平行于年轮切割木材得到超薄单板,然后通过简单的两步压制和碳化制备碳化木膜(CWF)。超薄厚度(140 μ m)、高电导率(58 S cm − 1 )的CWF-1200的比EMI屏蔽效能(SSE/t)可达9861.41 dB cm 2 g − 1,远高于已报道的其他木质材料。此外,在CWF表面原位生长沸石咪唑酯骨架-8(ZIF-8)纳米晶体,得到CWF/ZIF-8。CWF/ZIF-8表现出高达46 dB的EMI屏蔽效能(SE),在X波段表现出11 330.04 dB cm 2 g − 1的超高SSE/t值。此外,超薄CWF还表现出优异的焦耳加热效应。因此,超薄木基薄膜的开发为木质生物质取代传统的不可再生且昂贵的电磁(EM)屏蔽材料提供了研究基础。
图 3 | 3D 打印多孔导电陶瓷的结构分析。A 和 B,3D 打印多孔陶瓷的 SEM 图像。C,3D 打印多孔陶瓷的 TEM 图像,显示石墨烯渗透到多孔颗粒中。比例尺代表 50 纳米。D,BET-BJH 氮吸附等温曲线。E,孔径分布图。F,具有不同石墨烯/二氧化硅比率的 3D 打印样品的热导率测量。G,放置在热板上的 3D 打印 UB 标志的红外 (IR) 图像。该图像是在将样品在热板上放置 30 分钟后拍摄的。H,单轴压缩试验的应力-应变曲线。I,3D 打印样品的抗压强度摘要。经 SPS 处理的样品的抗压强度提高了 96.19%。