为了将以前未开发的电磁波谱部分用于丰富的复杂新服务(通信),需要在对流层中测量无线电折射率的微小变化。关于地球大气边界层(与大陆和海洋直接热接触和摩擦接触的空气)无线电折射率精细结构的高分辨率信息可用于许多应用,例如航天器跟踪、卫星导航、无线电干涉测量、遥感等。最新的发展使得我们能够通过现场和遥感技术在所有重要的空间和时间尺度上研究大气的这一区域。由于传统气象系统(如无线电探空仪、投投探空仪等)的内在缺陷,无线电折射率的大多数急剧梯度都被消除了。机载微波折射仪是一种非常精密的仪器,可以近乎实时地提供无线电折射率的精细结构信息数据。它的垂直高度分辨率约为一米或更低。它是唯一适合获取亚折射和超折射以及管道发生统计数据的仪器,可用于无线电和雷达操作的实时评估。该折射仪有助于了解热带边界层的微物理特性以及设计厘米波和毫米波无线电系统。该地区的物理特性是非平稳的,因为该地区的特点是存在温度和湿度逆变,这会导致无线电折射率以层的形式出现严重的不均匀性。这种高分辨率无线电气候信息在印度几乎不存在。为了收集此类信息,本文作者开发了一种机载微波折射仪(Sarma 等人,1975 年),并在后来几年考虑到工程和航空电子方面改进了设计,并于 1983 年、1985 年和 1988 年进行了飞行测试。
致谢 下面列出的插图由指定来源提供。非常感谢使用这些插图的许可。必须从来源处获得复制本出版物中的插图和其他材料的许可。图 4-7,霍曼转移,Damon,Thomas D.(2001)太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/ 。图 4-8,快速转移,Damon,Thomas D.(2001)太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/ 。图 7-8,GPS 标称星座,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-9,GPS 导航解决方案,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-10,精度几何稀释,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-11,GPS 主控和监控站网络,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-12,电磁波谱,什么是遥感?网页,http://ls7pm3.gsfc.nasa.gov/mainpage.html 。图 7-13,制作彩色图像,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/oahu/rem_sens_ex/rsex.spectral.1.html 。图 7-14,入射角,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/kilauea/radar_ex/intro.html 。图 7-15,Landsat,Landsat 信息网页,http://www.exploratorium.edu/learning_studio/landsat/landsat.html 。图 7-16,AN/SMQ-11 接收终端,DMSP AN/SMQ-11 船载接收终端网页,http://www.laafb.af.mil/SMC/CI/overview/dmsp35.html 。图 7-17,GOES,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html 。图 7-18,GOES 定位,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html 。图 7-19,GOES 成像仪、探测器图片,http://www.nnic.noaa.gov/SOCC/gifs/sndr.gif 。
鸣谢 下面列出的插图由指定来源提供。非常感谢使用这些插图的许可。复制本出版物中的插图和其他材料必须先获得来源方的许可。 图 4-7,霍曼传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 4-8,快速传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 7-8,GPS 标称星座,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html。图 7-9,GPS 导航解决方案,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-10,精度几何稀释,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-11,GPS 主控和监控站网络,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-12,电磁波谱,什么是遥感?网页,http://ls7pm3.gsfc.nasa.gov/mainpage.html 。图 7-13,制作彩色图像,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/oahu/rem_sens_ex/rsex.spectral.1.html 。图 7-14,入射角,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/kilauea/radar_ex/intro.html 。图 7-15,Landsat,Landsat 信息网页,http://www.exploratorium.edu/learning_studio/landsat/landsat.html 。图 7-16,AN/SMQ-11 接收终端,DMSP AN/SMQ-11 船载接收终端网页,http://www.laafb.af.mil/SMC/CI/overview/dmsp35.html 。图 7-17,GOES,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-18,GOES 定位,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-19,GOES 成像仪、探测器图片,http://www.nnic.noaa.gov/SOCC/gifs/sndr.gif。
鸣谢 下面列出的插图由指定来源提供。非常感谢使用这些插图的许可。复制本出版物中的插图和其他材料必须先获得来源方的许可。 图 4-7,霍曼传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 4-8,快速传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 7-8,GPS 标称星座,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html。图 7-9,GPS 导航解决方案,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-10,精度几何稀释,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-11,GPS 主控和监控站网络,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-12,电磁波谱,什么是遥感?网页,http://ls7pm3.gsfc.nasa.gov/mainpage.html 。图 7-13,制作彩色图像,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/oahu/rem_sens_ex/rsex.spectral.1.html 。图 7-14,入射角,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/kilauea/radar_ex/intro.html 。图 7-15,Landsat,Landsat 信息网页,http://www.exploratorium.edu/learning_studio/landsat/landsat.html 。图 7-16,AN/SMQ-11 接收终端,DMSP AN/SMQ-11 船载接收终端网页,http://www.laafb.af.mil/SMC/CI/overview/dmsp35.html 。图 7-17,GOES,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-18,GOES 定位,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-19,GOES 成像仪、探测器图片,http://www.nnic.noaa.gov/SOCC/gifs/sndr.gif。
高性能科学卫星的可持续发展之路 高性能科学卫星目前是政府资助机构的专属领域。Twinkle 太空任务背后的团队正在开发一种新型小型可持续科学卫星,利用商业太空领域的最新创新。 太空机构执行的科学任务对科学和社会产生了变革性影响。旅行者号等任务揭示了有关我们太阳系及其他地区的宝贵信息,而 Envisat 等地球观测卫星则提供了证实全球变暖的长期温度趋势。这些开创性的任务带来了无数发现,并为太空仪器设定了高技术标准。 哈勃和斯皮策太空望远镜以及 XMM-Newton 等一般空间科学观测站通常涵盖多种科学用例。这些卫星内的高性能科学仪器通常需要为每个任务专门开发的复杂而尖端的技术。由于开发时间长且实施成本高,与商业地球观测等其他领域相比,运行中的科学卫星数量相对较少。因此,到目前为止,科学界不得不在大量超额认购的太空望远镜上争夺时间。地面观测和新的小型机器人望远镜网络通常更容易获得,设施由政府间和私人组织建造和管理。许多这样的设施已经开发出创新的数据访问模型,包括出售望远镜“夜晚”和基于会员制的调查合作模型。随着时间的推移,社区已经习惯了这种新方法,购买“望远镜时间”的资金补助也随之增加。不幸的是,地面观测有其自身的挑战和局限性,由于地球大气的吸收和散射,大部分电磁波谱被阻挡。此外,天空和望远镜的热背景变化很大,使得在红外波长下无法进行高精度的地面观测。太空仪器可以克服这些问题,但众所周知,将卫星送入太空既困难又昂贵。全球许多大学和研究机构都通过建造内部科学“立方体卫星”(质量为几公斤 1 的卫星)来挑战当前模式。然而,与立方体卫星格式兼容的仪器通常太小,无法解决广泛的科学问题。到目前为止,这些问题只能通过政府机构建造的旗舰任务来解决。
鸣谢 下面列出的插图由指定来源提供。非常感谢使用这些插图的许可。复制本出版物中的插图和其他材料必须先获得来源方的许可。 图 4-7,霍曼传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 4-8,快速传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 7-8,GPS 标称星座,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html。图 7-9,GPS 导航解决方案,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-10,精度几何稀释,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-11,GPS 主控和监控站网络,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-12,电磁波谱,什么是遥感?网页,http://ls7pm3.gsfc.nasa.gov/mainpage.html 。图 7-13,制作彩色图像,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/oahu/rem_sens_ex/rsex.spectral.1.html 。图 7-14,入射角,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/kilauea/radar_ex/intro.html 。图 7-15,Landsat,Landsat 信息网页,http://www.exploratorium.edu/learning_studio/landsat/landsat.html 。图 7-16,AN/SMQ-11 接收终端,DMSP AN/SMQ-11 船载接收终端网页,http://www.laafb.af.mil/SMC/CI/overview/dmsp35.html 。图 7-17,GOES,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-18,GOES 定位,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-19,GOES 成像仪、探测器图片,http://www.nnic.noaa.gov/SOCC/gifs/sndr.gif。
鸣谢 下面列出的插图由指定来源提供。非常感谢使用这些插图的许可。复制本出版物中的插图和其他材料必须先获得来源方的许可。 图 4-7,霍曼传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 4-8,快速传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 7-8,GPS 标称星座,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html。图 7-9,GPS 导航解决方案,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-10,精度几何稀释,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-11,GPS 主控和监控站网络,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-12,电磁波谱,什么是遥感?网页,http://ls7pm3.gsfc.nasa.gov/mainpage.html 。图 7-13,制作彩色图像,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/oahu/rem_sens_ex/rsex.spectral.1.html 。图 7-14,入射角,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/kilauea/radar_ex/intro.html 。图 7-15,Landsat,Landsat 信息网页,http://www.exploratorium.edu/learning_studio/landsat/landsat.html 。图 7-16,AN/SMQ-11 接收终端,DMSP AN/SMQ-11 船载接收终端网页,http://www.laafb.af.mil/SMC/CI/overview/dmsp35.html 。图 7-17,GOES,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-18,GOES 定位,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-19,GOES 成像仪、探测器图片,http://www.nnic.noaa.gov/SOCC/gifs/sndr.gif。
或 L2,1 距离地球近一百万英里。经过 20 多年的设计、开发和测试,一个月的极其复杂的在轨部署(包括 344 个潜在的单点故障)和六个月的调试活动,JWST 现在正在进行科学操作,它是人类有史以来发送到太空的最大、最强大的望远镜。JWST 是一个大型红外太空望远镜,由美国国家航空航天局 (NASA) 科学任务理事会天体物理学部管理。该望远镜旨在成为美国国家航空航天局 (NASA) 两大大型天文台哈勃太空望远镜和斯皮策太空望远镜的补充和科学继任者。2 JWST 在灵敏度和分辨率方面的前所未有的提高使天文学家能够更详细地观察更远距离的宇宙。 1999 年,美国宇航局正式批准启动下一代太空望远镜 (NGST) 的项目制定。2000 年,NGST 被推荐为天文学和天体物理学十年调查的首要重大举措,并设想成为一台 8 米级的红外太空望远镜,“旨在探测第一批恒星发出的光并追踪星系从形成到现在的演化”,“将彻底改变人们对当今银河系恒星行星形成方式的理解。”3 这些主题一直贯穿着 JWST 任务的科学主旨。在詹姆斯韦伯太空望远镜的研发过程中,科学、空间和技术委员会举行了多次监督听证会,包括在 2011 年、2015 年和 2018 年。今天的听证会是委员会首次就望远镜观测的早期科学和科学结果举行的听证会。红外天文学 JWST 经过优化,可观测红外光。人眼可以感知可见光,即可见光,而红外光的波长较长,位于电磁波谱光学部分的红端以外,如图 1 所示。天文学利用红外光研究较冷的物体,例如尚未开始燃烧氢的年轻恒星或恒星周围盘中形成的行星。天文学家还在红外范围内进行观察,以透过星云或恒星形成云层中的尘埃(通常会阻挡可见光)。宇宙中第一批恒星和星系发出的光最初是以可见光或紫外光的形式发射的,但它以红外光的形式到达地球,因为它在不断膨胀的宇宙中传播很长的距离,被拉伸到更长的波长。天文学家将这种拉伸效应称为“红移”。
定向能武器 什么是定向能武器? 定向能武器 (DEW) 使用聚焦电磁能来攻击和消除敌方威胁和资产。这些武器包括高能激光和高功率电磁系统,包括毫米波和微波武器。与传统弹药不同,定向能武器具有暂时性和可逆性等优势。它们可以削弱或禁用电子系统,而不会彻底摧毁它们。 定向能武器如何发挥作用? 每种类型的定向能武器都在特定的电磁波谱范围内运行。该频谱包括按波长分类的所有形式的光。不同的波长赋予独特的属性,影响穿透各种材料(如金属或生物组织)的能力。 定向能武器如何发挥作用? • 高能激光器 (HEL) 发射集中的光束,通常在红外到可见光谱内。这些激光器可以是连续的,也可以是脉冲的,输出功率低至 1 千瓦。它们的精确度使它们能够瞄准和熔化金属、塑料和其他材料。 • 毫米波武器的波长范围为 1 至 10 毫米,可提供超过 1 千瓦的功率。由于光束更宽,它们可以同时影响多个目标。 • 高功率微波武器产生的微波波长比激光或毫米波更长。它们能够产生超过 100 兆瓦的功率,并可以在其更大的光束区域内破坏多个目标。 定向能武器可提供从非致命到致命的一系列效果,这些效果可能受到曝光时间、距离和目标区域等因素的影响。此外,它们可以以渐进的方式使用。非致命反应包括暂时禁用电子系统或阻止访问特定物理区域或系统,而降级则涉及降低敌方传感器或电子设备的有效性。致命反应包括通过集中能量来熔化或使关键部件失效,从而摧毁或严重损坏目标。 定向能武器开发 将定向能武器从开发阶段推向作战部署阶段面临挑战。它们的有效性会随着距离的增加和恶劣的大气条件而降低。在作战方面,定向能武器的效用可能比最初认为的要有限,因为宽波束定向能武器可以同时影响影响范围内的友军和敌军资产,而且它们可能难以对付防护良好的目标或视线受阻的环境。此外,与定向能武器相关的国际规范和法规尚处于起步阶段,没有提供明确的框架来减轻使用定向能武器的风险。此外,对于现有工业供应链是否有能力大规模生产定向能武器,仍存在未解问题。实际应用定向能武器可能提供实用的防空和地面防御应用。具体来说,它们最适合用于对付无人机、火箭、火炮和迫击炮等移动速度较慢且成群结队的威胁,方法是破坏或摧毁它们的电子元件和制导系统。定向能武器经常被认为具有导弹防御潜力,包括对付洲际弹道导弹,但目前此类应用的技术挑战
20 世纪 90 年代初,世界通信领域出现了一些重要趋势,对世界各地人们的日常生活产生了重大影响。本文*将讨论当前最重要的四个趋势及其影响。这四个主要趋势起源于 20 世纪 80 年代,成熟于 20 世纪 90 年代。它们是:数字化、整合、放松管制和全球化。这四个趋势相互关联。它们以主动和被动的方式相互关联。数字化的基本趋势意味着越来越多的跨境互动基于电子格式,这加强了技术整合和机构整合。这些综合技术和机构促进了放松管制环境的趋势,并加强了全球化趋势。放松管制与全球化也息息相关。全球运营需要全球市场,而全球市场又需要放松国家市场的管制。数字化为全球化提供了技术基础,因为它促进了全球服务贸易、全球金融网络以及高科技研发在全球范围内的传播。自 20 世纪 80 年代中期以来,数字化促进了从公共网络到私人企业网络的转变,这些网络已成为全球贸易的支柱。企业全球网络的强大用户和运营商群体有效地推动了电信结构从公共所有权到私人所有权的转变。整合与全球化息息相关。1991:195)。整合是全球化的基础,而全球化市场的发展也迫使企业进行合并,以保持在全球市场的竞争力。数字化趋势。数字化意味着信息处理和传输技术开始使用同一种语言。这是二进制代码的计算机语言。这种数字语言促进了计算机、电信、办公技术和各种视听消费电子产品的融合。这种数字集成提供了速度、灵活性、可靠性和低成本。数字化意味着以更低的价格获得更好的技术质量。信道大大扩展了其容量,电磁波谱可以得到更高效的利用,消费者的选择更多,交互式系统的可能性也更大。由于转换为数字形式的存储、检索和编辑意味着节省时间和劳动力,因此实现了经济效率。数字化大大提高了语音和视频传输的质量。例如,对于高质量视频,可以对图像进行数字压缩,然后以每秒 56k 比特的速度通过卫星作为计算机文件传输。数字数据可以在以原始速度播放之前存储在计算机磁盘系统上。这可以应用于新闻采集,因为可用的数字压缩和存储系统重量轻。电视中的数字压缩技术为卫星电视广播提供了重要的经济优势。可以将更多的电视频道放在更少的转发器上,这意味着可观的节省。例如,亚洲卫星 AsiaSat 上一个转发器每年的成本为 150 万美元。通过数字压缩,一个转发器上可以有十多个频道。这项技术将增加视频会议和付费电视等项目的机会。在数字化过程中,早期的模拟信息传输和存储模式开始被更强大、更可靠、更灵活的数字系统所取代。“这一过程的技术基础在于战后初期,在于为计算和稍后的电信发明了一种通用的微电子语言。”(Schiller & Fregoso。随着数字交换机和数字传输设施的发展,世界各地越来越多地开始从模拟网络向数字网络过渡。正如 Schiller 和 Fregoso 正确观察到的那样,这一过程不仅仅是从模拟技术向数字技术的转变,而且除了技术转型之外,这一过程也是制度性的——“无论是从其来源还是从其含义来看”。(Schiller & Fregoso。1991:195)。当今世界通信的最大用户要求在全球范围内建立广泛、负担得起、可靠和灵活的电子高速公路。只有数字全球电网才能满足这些需求。这意味着开发新的硬件和软件。数字电网将有望传输所有可以数字化的信号:从人声到高清电视图像。数字技术应该能够以光速和低廉的价格发送信息。这需要用光纤电缆取代铜线等传统载体,这意味着需要新的交换机和新的软件来控制前所未有的大规模跨境信息流。