纳米结构的应用受到限制,因为事实证明,在制造之后修改其静态属性过于困难。[19] 为了解决这一重大问题并开辟在纳米尺度上动态控制光的途径,研究正转向具有可调特性的动态系统,例如基于相变材料[20–24]、掺杂的金属氧化物纳米晶体[25]和石墨烯[26–28]。受极强的氧化还原可调性的推动[29],我们最近引入了导电聚合物作为动态等离子体的新材料平台。[30] 导电聚合物以前曾被用来调节由金等传统金属制成的纳米结构的等离子体响应。 [31–34] 我们证明了高导电聚合物聚(3,4-乙烯二氧噻吩:硫酸盐)(PEDOT:Sulf)的纳米盘无需任何金属纳米结构即可用作动态等离子体纳米天线,聚合物本身由于其高移动性和大密度的极化子电荷载体(2.6×1021cm-3,由椭圆偏振法测定)而成为等离子体材料。[30] 令人兴奋的是,这些纳米天线可以通过化学调节聚合物的氧化还原状态来完全打开和关闭,这极大地调节了材料的电导率和光学性质。[30] 然而,调节过程基于暴露在气体和液体中,而未来的系统将需要更方便、更快捷的电调节。
本文介绍了一种基于电压差分跨导放大器 (VDTA) 的波有源滤波器的高阶电压和电流模式低通或高通滤波器。针对波有源滤波器的基本有源构建模块,提出了波等效变量技术和拓扑模拟以及使用波变量技术的操作实现。将所提出的波等效技术与正确选择端子连接一起应用于波有源滤波器。本文提出,实现波有源滤波器的基本元件是串联电感和并联接地电容。通过使用 SPICE 模拟和 0.18 µm TSMC CMOS 技术参数,实现了最低功耗为 ±0.82 V 的 4 阶低通和高通巴特沃斯滤波器,从而验证了所提出的波有源滤波器。
Vision ® Jet 定义了私人飞机类别。它理所当然地拥有世界上最先进的驾驶舱。Vision Jet 配备了两个高分辨率飞行显示器,并设计了三个横向触摸屏控制器,以真正优化涡轮飞机的运行。控制器呈现熟悉、直观的界面,让飞行员通过明亮的全景显示屏快速访问详细的飞行和系统信息。三触摸屏布局允许与飞机系统进行高级交互,增强实时天气、集成重量和平衡、无线电调谐、客舱通信等。此外,只需一个命令,每个触摸屏都可以互换,能够用作 PFD、MFD 或 NAV/COM 控制器。
这些多功能一体化航空电子设备平台由数千个 Garmin 玻璃系统演变而来,现在更加强大 — 提供更快、更智能、视觉更清晰的技术,为未来的先进功能奠定基础。GTN 650Xi 和 GTN 750Xi 型号均配备清晰的彩色触摸屏,可轻松访问导航、无线电调谐、多功能显示器 (MFD) 功能等。紧凑型 GTN 650Xi 封装高 2.65 英寸 — 而更大的 GTN 750Xi 边框高 6 英寸,配备 6.9 英寸对角线显示屏。这些新一代航空电子设备将完整的 WAAS LPV 进近能力与最新的动态地图、图形飞行计划和垂直导航 (VNAV) 引导相结合,以执行复杂的 RNAV 程序,为航空业首屈一指的 GPS/Nav/Comm/MFD 套件带来前所未有的便利性、效率和态势感知水平。
水凝胶的独特性质使得设计栩栩如生的软智能系统成为可能。然而,刺激响应型水凝胶仍然受到驱动控制有限的困扰。直接电子控制电子导电水凝胶可以解决这一难题,并允许与现代电子系统直接集成。本发明展示了一种具有高平面电导率的电化学控制纳米线复合水凝胶,可刺激单轴电化学渗透膨胀。该材料系统允许在仅 -1 V 的电压下精确控制形状变形,其中水凝胶本体的电容充电导致高达 300% 的单轴膨胀,这是由于每个电子离子对约 700 个水分子的进入引起的。该材料在关闭时会保持其状态,这对于电调谐膜来说是理想的选择,因为膨胀和中孔率之间的固有耦合使得能够通过电子控制渗透性以实现自适应分离、分馏和分布。用作电化学渗透水凝胶致动器,它们可实现高达 0.7 MPa 的电活性压力(1.4 MPa vs 干燥)和 ≈ 150 kJ m − 3 的工作密度
摘要 本研究将讨论低通滤波器这一主题。研究范围将包括研究人员在整个实验过程中获得的数据、低通滤波器的样本图、理论和背景介绍以及数据和结果的分析。此外,研究还将研究一个名为 Multisim 的软件程序,以更准确地观察低通滤波器的行为。选择这个主题是因为这是研究人员最熟悉的滤波器类型。此外,这种类型的滤波器用于许多音频应用中,它可以消除背景噪音、消除数据分析中的特定频率、无线电调谐等等。因此,这种类型的滤波器被称为高切或高音切滤波器。这种熟悉是每个小组成员在整个课程中的先前经验和学习的结果。关键词:低通滤波器、截止频率、RC 低通滤波器、RL 低通滤波器、频率响应。1. 简介低通滤波器是只接受低频信号通过并阻止高频信号的滤波器 [1]。低频信号被定义为频率值低于截止频率的信号 [2]。此外,它分离输入信号,并根据频率值接受或拒绝信号。此外,它由与电感器或电容器连接的电阻器组成。只有两种类型的低通滤波器,即电感式和电容式低通滤波器 [3,4]。电容滤波器是电阻器和电压源串联连接。电容器两端的阻抗与频率成反比关系,而电容器的阻抗会随着频率值的增加而减小 [5]。这意味着电容器对低频具有高电阻,从而阻止其通过电容器。它对高频信号的电阻也很低。高频信号将通过电容器,因为它对它的电阻很低,而电容器将拒绝低频信号。因此,它将通过输出电压。由于电容器的反应性,电容器倾向于将高频信号与低频信号分开 [6]。
嵌入纳米线波导的外延量子点 (QDs) 是单个光子和纠缠光子的理想来源,因为这些设备可以实现高收集效率和发射线纯度 1 – 4 。此外,这种架构有可能通过在纳米线内串联耦合量子点来形成量子信息处理器的构建块。具有清晰分子键合和反键合状态特征的量子点分子已被证明,其中可利用量子限制斯塔克效应 5、6 调整载流子群。这些光学活性量子点也是量子网络单元非常有希望的候选者,因为它们可以将光子量子比特中编码的量子信息传输到固态量子比特并在耦合的量子点电路中处理该信息 7 – 9 。控制点之间的隧道耦合是适当调整和执行量子比特之间量子门所需的关键特性。例如,在静电定义的量子点中,可通过为此目的设计的电门实现点间隧道耦合,并且已实现多达 9 个量子比特的线性阵列 10 。在外延量子点中,隧道耦合由量子点之间的距离决定,该距离在生长过程之后无法改变 7 、 11 – 13 。由于原子级外延生长的不确定性,这会产生可重复性问题。克服这些问题的尝试包括旨在引入受控结构变化的措施,例如激光诱导混合 14 、将发射器放置在光子腔中 13 或调整点附近的应变场 15 。这些过程可提高量子点发射器的均匀性,但是它们无法实现时间相关的调整和可寻址性。为了实现这一点,通过金属栅极将外部电场施加到量子点上,从而控制电荷状态 16 、通过斯塔克位移 5 进行光谱调谐以及通过四极场 17 控制激子精细结构。此外,最近在外延量子点中进行的电子传输实验已经证明了隧道耦合的电调谐 18 – 20 。然而,这些方法需要复杂的设备设计和工程。在本信中,我们通过施加垂直于点堆叠方向的磁场来演示点间耦合的可调谐性。我们首先对 InP 纳米线中的 InAsP 双量子点 (DQD) 进行光学磁谱分析,并确定了逆幂律,该定律控制每个点的 s 壳层发射之间的能量差,该能量差是点间距离的函数。发射能量受点成分和应变差异的影响,而点之间的耦合则在生长阶段由分隔它们的屏障厚度决定。但是,我们将证明我们可以调整对于特定状态,通过施加平行于量子点平面的磁场(即 Voigt 几何),发射能量差可在约 1 meV 的范围内按需变化。正如我们将要展示的,如果没有点之间的量子力学耦合,这种能量转移就不可能实现,我们将此结果解释为点间隧道耦合的磁场调谐是由于经典洛伦兹力的量子类似物而发生的。