摘要 - 基于等效电路模型(ECM)估计开路电压(OCV)的所有电荷状态(SOC)估计算法,并使用SOC-OCV非线性关系将其转换为SOC。这些算法需要识别ECM参数和非线性SOC-OCV关系。在文献中,提出了各种技术来同时识别ECM参数。然而,SOC-OCV关系的同时同时鉴定仍然具有挑战性。本文提出了一种构建SOC-OCV关系的新技术,最终将其转换为单个参数估计问题。使用拟议的参数估计和SOC-OCV构建技术实施了Kalman过滤器,以估算电池中的SOC和相关状态。在数值模拟中,该算法证明它准确地估计了电池模型参数,并且SOC估计误差仍低于2%。我们还通过电池实验验证了所提出的算法。实验结果表明,SOC估计的误差保持在2.5%以内。
水氧化还原流量电池(ARFB)构成了一种有前途的电网电力储存技术,但是要实现超过1.23 V热力学水分拆分窗口,具有高库仑效率和较长寿命,这是一项挑战。pH解耦合 - 在vegoly和posolyte之间创建pH值差 - 可以扩大操作电压窗口并改善长期操作稳定性。但是,由于pH梯度引起的酸性跨界,这会惩罚效率。随着水分裂窗口的电压随pH的线性变化,而跨界通量呈指数变化,我们采用了轻度的酸性和轻度的碱性电解质,以在开放电路电压> 1.7 V处开发具有较高的圆形能源效率的细胞。
摘要:这项研究探索了钙钛矿太阳能电池的性能,包括MASNI3,CH3NH3SNI3,CSPBI3和CSSNGEI3,分析关键指标,例如效率,敞开电路电压(VOC),短路电流电流密度(JSC)和填充因子(JSC)和填充因子(ff)。使用SCAPS软件的模拟提供了基线数据,并使用高级计算技术对其进行了进一步验证和扩展。灵敏度分析揭示了诸如带隙能量和载体迁移率之类的参数的影响,而层优化和电路模型则提供了对增强设备性能的见解。比较分析和现实世界模拟弥合了实验室结果与实际应用之间的差距,并得到了机器学习模型的支持,以预测新型材料的效率。这种全面的方法有助于优化钙钛矿太阳能电池以进行未来的应用。
摘要最近,已广泛研究了摩擦电纳米生成器(TENG)以开发柔性和可穿戴电子产品。在Teng修饰的各种方法中,熔化近场直接写作是制造固定液体Teng的新方法。在这里,将带有传统聚合物引入电纺PCL,以制造复合固体底层底层,然后选择水,二甲基酮和增益作为液体互动层。在本文中,比较了固体底物效应,温度梯度效应和液体底物效应。在本文中采用了Teng的独立模型,并且PCL-PI复合固体底层底层固体层产生的电荷比原始的底层高10倍以上,显示出高电荷产生能力融化近场直接直接的书面微纤维。此外,将讨论详细的调查,如何获得高电路电压和短路电流。
1. 最有可能为拟议公共耦合点 (PCC) 提供服务的变电站母线、组或电路。此标识并不一定表示这将是项目最终要连接的电路。2. 基于可能为拟议 PCC 提供服务的正常或运行额定值的变电站母线、组或电路的总容量(MWac)。3. 互连到可能为拟议 PCC 提供服务的变电站母线、组或电路的现有输出容量(MWac)。4. 尚未建造但在先前接受的互连申请中找到的可能为拟议 PCC 提供服务的变电站母线、组或电路的 DER 的输出容量(MWac)。5. 可能为拟议 PCC 提供服务的变电站母线、组或电路的可用容量(MWac)。6. 变电站标称配电电压。7. 与拟议 PCC 相同的标称配电电路电压。8. 拟议 PCC 所在的配电电路的标签、名称或标识符。 9. 拟建 PCC 与变电站之间的大致电路距离。10. 任何相关线路段的实际或估计峰值负载和最小负载数据,包括日间最小负载和绝对最小负载(如有)。如果没有
本文介绍了一种新型的基于Aerogel的摩擦电纳米生成器(TENG),该纳米生成器(TENG)显示了能量收集和传感应用的卓越性能。基于多酰亚胺的气凝胶膜具有不同的开孔含量水平,可用作Teng的主要接触材料。制造的气凝胶膜已充分表征,以揭示开发材料的化学和机械性能。与完全致密的聚酰亚胺层且无孔隙率相比,聚酰亚胺气凝胶膜的使用显着提高了Teng的性能。这种增强是由于有效表面积的增加,气凝胶开放式电池内的电荷产生以及TENG设备的相对电容的增加所致。孔隙率从零变化到70%的开放式孔隙含量的影响表明,具有50%的气门膜显示出最高的性能,其中获得了40次峰值的峰值敞开电路电压,而峰值短路电流则获得了5 𝜇𝜇𝜇𝜇的峰值短路电流。这些值高于带有数量级的简单聚酰亚胺层的Teng的值。最后,测试了电阻载荷和电容器下提议的teng的性能。因此,这项工作为高性能teng提供了一种有效的方法。
一种水热方法用于合成不同的光射道,以在染料敏化的太阳能电池(DSSC)中应用。这些光射手包括WO 3,Tio 2,石墨烯-Tio 2,Wo 3 -tio 2和石墨烯3 -tio 2的纳米结构。使用扫描电子显微镜(SEM),能量分散性X射线光谱(EDS),紫外线可见光谱(UV-VIS)和傅立叶转换红外光谱光谱(FTIR)分析纳米颗粒的形态。结果表明,石墨烯 - -tio 2纳米结构具有较大的表面积,为有效的太阳能转化提供了更多的活性位点。值得注意的是,DSSC合并了石墨烯3 -tio 2纳米颗粒电极的表现仅基于TiO 2和WO 3,其较高的短路电流密度为7.5 mA.cm -2,开放式电路电压为0.68 V,填充因子为0.46,填充因子为0.46,功率为2.4%。相反,纯TiO 2和WO 3细胞仅达到0.88%和0.69%的效率。三元纳米结构的出色电子迁移率促进了电荷捕获并注入导电基板,从而减少了重组。此外,WO 3纳米棒和石墨烯的散射效应增强了光阳极中的光收集,从而导致太阳能电池的总体效率提高。这些发现突出了合成石墨烯的潜力,可以在DSSC中应用于有希望的光阳极材料。
摘要:这是一篇技术文章,它展示了低成本的汽车电池安全警报系统,该系统将多振动器电路用于双音多频率(DTMF)输出(响亮的蜂鸣声音)警报以监视和保护汽车电池免受本地盗窃的影响。整个电路是一个简单的电路,生产低成本。不断窃取汽车电池的不断案件,尤其是在发展中国家的案件。和更换汽车电池的成本每天增加。因此,需要将她的汽车电池从街道盗窃上固定。使用机械固化和电子安全系统,可以闭合两只眼睛的系统。该设备将车停在车主的住所外或其他地方时,用作汽车电池的电子监管机构。安全系统提供了可充电电池的内部可充电电池,可通电警报电路,具有单杆双插入(SPDT)继电器和连接的电缆,并具有能够提醒邻域的输出声音。每当汽车电池从端子头部断开连接或循环电缆被损坏时,将触发连接的警报,这将引起社区的注意,并因此阻止了入侵者。使用电路向导软件模拟整个系统,并取得良好的结果。该系统是使用离散的半导体设备制造的,这些设备相对简单,可用于操作和维护,包装和测试。电路电压为11.52伏,绘制的电流为3.79a,导致瓦数为44瓦。该设备负担得起。