成本下降带来了希望,即电池很快就能管理数小时甚至数天的风能和太阳能间歇性问题。 1 随着可再生能源份额的增长,更大的挑战将是如何平滑数周和数月时间尺度上的可再生能源产出变化。如图 1 中加利福尼亚州的情况所示,风能和太阳能的季节性变化将需要比电池更具成本效益的技术来进行长期储能。迫切的需求似乎来自加利福尼亚州等富裕地区,该州的目标是在 2026 年实现 50% 的可再生能源发电量,在 2030 年实现 60% 的可再生能源发电量。然而,由于发展中国家的电网建设基础较低,可再生能源的高份额会更快到来。一些快速增长的非洲和亚洲国家已经不得不推迟一些可再生能源的发展,因为它们的电网无法处理产出的变化。
变量 数值 单位 参考 电解器效率(LHV) 65 % [36] 电解器 H 2 出口压力 30 bar [36] H 2 压缩多变效率 60 % [37] H 2 存储最大压力 350 bar [38] 气网压力 50 bar [39] CO 2 压缩多变效率 85 % [40] CH 4 压缩多变效率 85 % [40] 电解器标称功率 3 MW 本文 甲烷化反应器压力 10 bar [3] 甲烷化反应器温度 350 ºC [3] CO 2 源能耗 0.64 kWh/kg CO2 [41]
限制全球气温上升需要迅速大规模部署减少各个层面碳排放的解决方案。间歇性可再生能源的开发得到了各国政府的大力支持,其产量将大幅增加。这种高发电量的引入带来了一些挑战,特别是在低消耗时期分配高产量。应对这一挑战最受推崇的解决方案之一是整合电转气技术 (P2G)。在这方面,欧盟及其一些成员国已经提出了支持氢气生产和消费的计划。同时,值得注意的是,这些技术的发展战略主要部署在地方层面。为了让地方为能源系统的脱碳做出贡献,各国政府正在将其能源政策的应用扩展到其领土。法国就是这种情况。过去几十年来,法国通过了法律在地方层面扩大能源政策的应用,目的是确保更好、更快地部署能源转型并在 2050 年实现碳中和。因此,法国各地区都设定了开发当地能源资源的目标。法国南部的 SUD 普罗旺斯-阿尔卑斯-蓝色海岸大区 (PACA) 为履行这些空气、能源、环境和气候变化适应责任,设定的目标是到 2050 年实现碳中和,由于该地区拥有大量太阳能资源,因此大规模发展太阳能光伏生产令人担忧。该地区还提出了一项氢能计划,以支持该地区这种能源的发展并为国家努力做出贡献。这项研究采用 TIMES PACA 进行,这是一个代表 PACA 地区能源系统的自下而上的优化模型,分析了 P2G 技术如何促进太阳能资源的开发。结果表明,P2G 技术对于区域能源系统脱碳和可再生能源部署至关重要,是国家和全球脱碳目标所需要的,并有望构建整个氢链。
| 旨在实现碳中和 “气田”通常是指地下化石天然气储备。加伯斯多夫的研究项目“可再生气田”暗示了由能源服务提供商 Energie Steiermark 牵头的项目合作伙伴的目标:有限能源的可再生替代品。该项目展示了如何通过采用成熟的可再生能源技术并根据当地情况将它们有效结合起来,在碳中和的基础上改造奥地利的能源系统。该项目的一个重要组成部分是日立造船 Inova (HZI) 的催化甲烷化技术,该技术首次在加伯斯多夫用于处理原始沼气。
摘要 — 通过收集和整理历史数据和典型模型特征,使用 Simulink 开发了基于氢能存储系统 (HESS) 的电转气 (P2G) 和气转电系统。详细研究了所提出系统的能量转换机制和数值建模方法。提出的集成 HESS 模型涵盖以下系统组件:碱性电解槽 (AE)、带压缩机的高压储氢罐 (CM 和 H 2 罐) 和质子交换膜燃料电池 (PEMFC) 电堆。基于典型的 UI 曲线和等效电路模型建立了 HESS 中的单元模型,用于分析典型 AE、理想 CM 和 H 2 罐和 PEMFC 电堆的运行特性和充电/放电行为。在配备风力发电系统、光伏发电系统和辅助电池储能系统 (BESS) 单元的微电网系统中模拟和验证了这些模型的有效性。 MATLAB/Simulink 仿真结果表明电解器电堆、燃料电池电堆及系统集成模型能够在不同工况下工作。通过测试不同工况下 HESS 的仿真结果,分析了氢气产出流量、电堆电压、BESS 的荷电状态 (SOC)、HESS 的氢气压力状态 (SOHP) 以及 HESS 能量流动路径。仿真结果与预期一致,表明集成 HESS 模型能够有效吸收风电和光伏电能。随着风电和光伏发电量的增加,HESS 电流增加,从而增加氢气产出量来吸收剩余电量。结果表明 HESS 比微电网中传统 BESS 响应速度更快,为后期风电-光伏-HESS-BESS 集成提供了坚实的理论基础。
摘要:随着可再生电力整合为网络运营商带来电网平衡挑战,新的电网弹性方法受到能源研究界的广泛关注。电转气 (P2G) 应用可以生产和使用绿色氢气。因此,它们可以将更多的可再生能源整合到能源系统中。同时,物联网 (IoT) 解决方案可以优化分散系统中的可再生能源应用。尽管这两种技术在可再生能源丰富的电网发展中都具有战略重要性,但基于物联网和相关解决方案的 P2G 进步机会尚未成为可再生能源研究的前沿。为了填补这一研究空白,本研究提出了一个混合(主题和批判)系统文献综述,以探讨战略共同专业化机会如何出现在最近的出版物中。研究结果表明,P2G 和 IoT 可以在多能源系统和能源互联网的拟议框架内从根本上联系起来,但需要进一步实证研究它们的操作和战略整合(例如,降低成本、风险管理和政策激励)。
电转气技术可以实现电网与气网间能量的双向流动,有利于改善综合能源系统的能量耦合、提高运行灵活性和经济性。本研究根据电转气设备的特点,在改进的P2G模型基础上,提出了详细的综合能源系统模型,并提出最优效率匹配系数以提高能源设备利用率。针对碳排放分配问题,引入碳交易机制,建立兼顾经济效益与成本(即销售效益、运营成本、碳交易成本、风电和光伏限电惩罚措施)的优化模型。案例研究验证了所提优化模型的优越性。此外,结果表明带气罐的电转气模式在综合能源系统综合运行能力方面具有明显优势。
摘要:本研究对包含创新技术(固体氧化物电解质电池共电解器和实验性甲烷转化器)并配有可再生发电机的尖端电转气系统进行了完整的热经济性分析。进行的经济分析(从未应用于此类系统)旨在通过现金流分析估算产品的合成天然气成本。对各种工厂配置(具有不同的工作温度和关键部件的压力水平(电解器:600-850 ◦ C;1-8 bar))进行了比较,以确定可能的热协同效应。进行了参数研究,以评估热力学布置和经济边界条件的影响。结果表明,环境压力系统与共电解器和高温甲烷转化器之间的热协同作用的组合具有最佳的经济性能(合成天然气值降低高达 8%)。如果考虑到一些技术经济驱动因素(存储系统和可再生能源发电的适当规模比、电解池成本的发展和碳税的引入),研究中的电转气解决方案所获得的合成天然气的生产成本(比天然气价格低 80%)在天然气市场上将具有竞争力。
摘要:工业部门脱碳对于实现可持续的未来至关重要。碳捕获和储存技术是主要选择,但最近,使用二氧化碳也被认为是一种非常有吸引力的替代方案,可以实现循环经济。在这方面,电转气是一种很有前途的选择,可以利用可再生 H 2 ,将其与捕获的二氧化碳一起转化为可再生气体,特别是可再生甲烷。由于可再生能源生产或可再生能源生产与消费之间的不匹配不是恒定的,因此必须储存可再生 H 2 或二氧化碳,以正常运行甲烷化装置并生产可再生气体。这项工作分析并优化了系统布局和存储压力,并提出了年度成本(包括资本支出和运营支出)最小化。结果表明,需要适当的压缩阶段来实现最小化系统成本的存储压力。该压力略低于二氧化碳的超临界压力,低于氢气的较低压力,约为 67 巴。最后一个量与储存和分配天然气的通常压力一致。此外,即使质量较低,H 2 的储存成本也高于 CO 2 ;这是因为 H 2 的密度低于 CO 2 。最后,结论是,压缩机成本是 CO 2 压缩中最相关的成本,但储罐成本是 H 2 中最相关的成本。