摘要:本研究描述了用于实验室环境的电子控制电阻负载组的设计过程、构建和测试。负载组的基本特性来自前期工作的初步设计。负载组是飞机混合动力推进试验台的一部分,用于静态分析,旨在降低成本和提高操作安全性。它旨在模拟飞机螺旋桨在稳定状态下以不同转速施加到传动轴上的可变机械载荷。由发电机 (EG) 供电,它可以分步施加电阻载荷,然后由发电机转换为机械载荷。设计、构建和组装了容纳电阻元件和冷却风扇的支撑框架。开发了两个传感器板来测量电压和电流。负载组的控制器由 Arduino 板实现,采用实时操作系统 (RTOS),并通过控制器局域网 (CAN) 总线与计算机上的监控系统通信。该程序的用户界面是作为 Windows Forms App 创建的,以便于使用和实时监控银行的运营。构建了一个单负载分接头并对其进行了测试,以验证传感器性能并获取热响应曲线。结果表明,该系统运行可预测且可靠,这鼓励了进一步的开发。
本文介绍了一种光伏 (PV) 储能系统的综合设计和控制策略。该系统由一个 2kW 光伏系统、两个转换器电路、一个 6 欧姆的电阻负载和一个集成直流总线的锂离子电池存储组成,为电阻负载提供恒定功率。该方案提供了两种转换器拓扑,一种是升压转换器,另一种是 DC/DC 双向转换器。升压转换器直接串联连接到 PV 阵列,而双向 DC/DC 转换器 (BDC) 连接到电池。升压转换器用于调节 PV 阵列的最大功率点跟踪 (MPPT)。双向控制器的闭环控制采用 Takagi-Sugeno 模糊 (TS-Fuzzy) 控制器来实现,以调节电池充电和放电功率流。所提出的方案提供了良好的直流总线电压稳定性。给出了所提出的控制方案在 MATLAB/Simulink 下的仿真结果,并与比例积分 (PI) 控制器进行了比较。在实时数字模拟器(RTDS)上验证了MATLAB获得的仿真结果。
电阻负载上的最大开关电流输出R1a,R1b,R1C,COS PHI = 1:3 A处,250 V AC中继a,电阻载荷上的R1B,R1B,R1C,电阻载荷,Cos Phi = 1:3 a在30 V dc dc dc dc Relay r1a,r1b,r1c,r2a,r2a in in r2 a in in r2 a in r2 a in-r2 in-r2 in-r2 in-r2 = 0. 4 250 V AC Relay output R1A, R1B, R1C, R2A, R2C on inductive load, cos phi = 0.4 an- d L/R = 7 ms: 2 A at 30 V DC Relay output R2A, R2C on resistive load, cos phi = 1: 5 A at 250 V AC Relay output R2A, R2C on resistive load, cos phi = 1: 5 A at 30 V DC电阻负载上的最大开关电流输出R1a,R1b,R1C,COS PHI = 1:3 A处,250 V AC中继a,电阻载荷上的R1B,R1B,R1C,电阻载荷,Cos Phi = 1:3 a在30 V dc dc dc dc Relay r1a,r1b,r1c,r2a,r2a in in r2 a in in r2 a in r2 a in-r2 in-r2 in-r2 in-r2 = 0. 4 250 V AC Relay output R1A, R1B, R1C, R2A, R2C on inductive load, cos phi = 0.4 an- d L/R = 7 ms: 2 A at 30 V DC Relay output R2A, R2C on resistive load, cos phi = 1: 5 A at 250 V AC Relay output R2A, R2C on resistive load, cos phi = 1: 5 A at 30 V DC
额定功率(VA)此目录中指定的功率级别是二级功率水平,换句话说,当变压器加载时可用的功率水平。它是RMS额定电压额定电流的RMS的乘积。如果变压器具有多个输出绕组,则额定功率分别表示RMS额外电压的最大总和分别为RMS额定电流。对于额定的环境温度条件,这种额定功率被罚款。示例:p = 3,2 VA TA 70 /b变压器可以在最大环境(70°C)下传递3.2VA,由由R(负载)= U(load)= U(sec)2 /p(分配的U SEC&P值)定义的电阻负载组成,加热并不超过该构造中使用的B类组件的相关限制。
额定功率(VA) 本目录中指定的功率水平为次级功率水平,换句话说,即变压器带载时可提供的功率水平。它是 RMS 额定次级电压与 RMS 额定电流的乘积。如果变压器具有多个输出绕组,则额定功率表示 RMS 额定次级电压与 RMS 额定次级电流乘积的最大和。此额定功率是根据额定环境温度条件定义的。示例:P = 3,2 VA ta 70/B 变压器在最高环境温度(70°C)下可提供 3.2VA,负载由电阻负载组成,定义为 R(负载)= U(秒)2/P(指定的 U 秒和 P 值),发热不超过此结构中使用的 B 类组件的相关限值。
最大开关电流继电器输出电阻负载上的最大开关输出R1C,COS PHI = 1:3 A在250 V AC中继输出电阻载荷上的输出R1C,电阻载荷,COS PHI = 1:3 A在30 V DC DC中继输出电感载荷上输出r1c,COS PHI = 0.4 = 0.4 = 0.4和L/R = 7 m- s:2 AT 250 V Ac cos in = 7 m- 2 a在30 V DC中继输出电阻载荷时输出R2C,COS PHI = 1:5 a在250 V AC继电器输出电阻载荷时输出R2C在电阻载荷上,COS PHI = 1:5 a在30 V DC DC中继输出电感载荷上,COS PHI = 0.4和L/R = 0.4和L/R = 7 m- s:2 AT 250 V Ac cos lage = 7 m- s:2 a cos in cos lag/c cos cos cos cos cos lay phi = 0. 2 A在30 V DC
• 对 R Sense 使用高精度、低漂移电阻。 • 应考虑 R Sense 功率额定值,以确保在所需电流负载下不会发生故障。 • 如果存在较大的电阻负载,则可以使用单独的高压电源来驱动电流到负载。 • 根据美国国家航空航天局 (NASA) 在文件 EEE-INST-002(2008 年 4 月)中以及欧洲空间标准化合作组织 (ECSS) 在文件 ECSS-Q-ST-30-11C Rev.1(2011 年 10 月 4 日)中提供的降额规范,选择了 5V 的 LMP7704-SP 电源电压。这些文件分别规定将线性 IC 的绝对最大电源电压降额至少为 80% 和 90%。 • 为了正常运行,必须将电源去耦。对于电源去耦,TI 建议将 10 nF 至 1 µF 电容尽可能靠近运算放大器电源引脚放置。对于所示的单电源配置,请在 V+ 和 V– 电源引脚之间放置一个电容。旁路电容的 ESR 必须小于 0.1Ω。
最大开关电流 继电器输出端 R1 在感性负载下 (cos phi = 0.4 和 L/R = 7 ms) : 2 A 在 250 V AC 继电器输出端 R1 在感性负载下 (cos phi = 0.4 和 L/R = 7 ms) : 2 A 在 30 V DC 继电器输出端 R2, R3 在感性负载下 (cos phi = 0.4 和 L/R = 7 ms) : 2 A 在 250 V AC 继电器输出端 R2, R3 在感性负载下 (cos phi = 0.4 和 L/R = 7 ms) : 2 A 在 30 V DC 继电器输出端 R1 在阻性负载下 (cos phi = 1) : 3 A 在 250 V AC 继电器输出端 R1 在阻性负载下 (cos phi = 1) : 3 A 在 30 V DC 继电器输出端 R2, R3 在阻性负载下(功率因数 = 1):250 V AC 时为 5 A 继电器输出 R2、R3 接在电阻负载上(功率因数 = 1):30 V DC 时为 5 A
摘要:本文介绍了一种采用突跳屈曲 (STB) 机制进行频率上转换 (FuC) 的压电能量收集器。该收集器由两个主要部件组成:双稳态机械结构和一个压电悬臂梁。该装置采用分析方法和数值模拟设计。制造了一个概念验证原型并在低频机械激励下进行了测试。实验结果表明,如果从第二个稳定配置回到未变形配置,如果诱发 STB,则可以获得 FuC,并且梁的响应会呈现很宽范围内的频率分量,即使悬臂梁的共振频率没有被激发。因此,结果与预期行为一致:如果强制处于第二个稳定配置的设备受到幅度超过阈值的低频激励,则会触发 STB,随后的 FuC 会导致梁振动频率范围扩大,从而显著提高功率输出效率。通过使用最佳电阻负载作为 STB,从双稳态机制的一个稳定配置触发另一个稳定配置,可获得 4 mW 的最大功率;如果采用带储能电容器的整流电路,可获得 4.5 µJ 的最大能量。
高速宽带分频器广泛应用于正交信号产生[1, 2]、时间交织THA和ADC系统[3, 4, 5]以及其他高速通信领域[6]。目前,已有多种基于不同拓扑和工艺的分频器被报道。特别地,InP DHBT在相同尺寸的器件下具有更高的击穿电压和更好的频率性能[7, 8],这意味着InP DHBT是高速分频器电路的更好选择。但是,电路的工作频率范围不能超过与器件工艺有关的截止频率ft的几分之一[9],这限制了电流型逻辑 (CML) 分频器的工作频率[9, 10]。为了提高分频器电路的高频性能,应努力提高相同ft 的器件的工作频率的利用率。已经发表了许多增强技术来扩展分频器的工作频率范围,例如电感峰值[9, 11, 12, 13],分流电阻负载[14, 15, 16],非对称锁存器[17],动态分频器[18, 19, 20, 21, 22]和双射极跟随器[23, 24]。然而,在电路设计中最大限度地利用器件ft的报道很少。本信