1. 发现的来源或历史、在国外的使用及其他信息 杜氏肌营养不良症(DMD)是一种X连锁隐性遗传病。该病是由X染色体上的肌营养不良蛋白基因突变缺失或重复导致功能性肌营养不良蛋白缺陷引起的(Cell. 1987;51:919-28)。DMD是“肌营养不良症”的一种指定难治性疾病,是一种难治性进行性肌肉疾病,并发呼吸肌和心肌无力以及严重的运动功能障碍、吞咽困难、痰液滞留和胃肠道功能障碍。患有 DMD 的儿童在 10 岁左右失去行走能力,平均寿命约为 30 年(杜氏肌营养不良症 (DMD) 实用指南 2014。Nankodo Co., Ltd.;2014:2-5)。每 3500 名新生男婴中就有 1 名患有 DMD(Neuromuscul Disord. 1991;1:19-29),估计日本约有 5000 名患者受到影响(Experimental Medicine. 2016;34:3151-8)。鉴于大约 8% 的 DMD 患者具有可使用 viltolarsen 治疗的基因突变(Hum Mutat. 2009;30:293-9),预计日本约有 400 名患者可使用 viltolarsen。 2019 年 8 月 20 日,Viltolarsen 被指定为孤儿药(孤儿药指定编号 2019 年第 440 号 [ 31 yaku ]),预期适应症为“杜氏肌营养不良症,肌营养不良蛋白基因缺失,可通过外显子 53 跳跃疗法治疗”。Viltolarsen 是一种合成的吗啉寡核苷酸,由申请人和美国国家神经病学和精神病学中心开发。Viltolarsen 与肌营养不良蛋白信使核糖核酸 (mRNA) 前体的外显子 53 结合,从而跳过外显子 53,导致肌营养不良蛋白的表达,这种蛋白比正常蛋白链短,但具有功能性。在日本,2013年6月,由国立神经精神病学中心以厚生劳动科学研究基金资助的研究者发起试验的形式开始了临床研究。申请人提交了viltolarsen的上市申请,声称viltolarsen在DMD患者中已证实了其有效性和安全性。在美国,viltolarsen的申请于2019年12月提交,目前正在审查中。截至2019年12月,viltolarsen尚未在任何国家或地区获得批准。日本批准的肌营养不良症适应症药物有泼尼松龙(适应症为“杜氏肌营养不良症”)和三磷酸腺苷二钠水合物注射剂(适应症为“肌营养不良症及相关疾病”)。 Viltolarsen 于 2015 年 10 月 27 日被指定为 SAKIGAKE 指定系统的对象(2015 年 SAKIGAKE 药品指定第 2 号 [ 27 yaku ]),其预期适应症为“杜氏肌营养不良症”。“Viltolarsen 还受到药品有条件早期批准制度的约束(PSEHB/PED 通知编号 1029-3,2019 年 10 月 29 日)。
肌营养不良症 (MD) 是一组罕见的遗传性疾病,会导致骨骼肌逐渐无力,并出现营养不良病理表型。它们分为九种主要类型:肌强直、杜兴氏、贝克尔、肢带、面肩肱型、先天性、眼咽型、远端型和埃默里-德雷富斯型 (Mercuri 等人,2019)。其中,成年人最常见的形式是肌强直性营养不良症 (DM),每 3000 人中就有 1 人受到影响,是由 DMPK(DM1:# 160900)或 CNBP(DM2:# 602668)基因座突变引起的(Mateos-Aierdi 等人,2015)。另一方面,儿童期最常见、最严重的遗传性营养不良症是杜氏肌营养不良症 (DMD,ONIM:#310200),每 5000 名新生男婴中就有 1 名患有此病 (Mendell 等人,2012 年),其原因是肌营养不良蛋白基因突变导致蛋白质完全缺失 (Ervasti & Sonnemann,2008 年;Hoffman 等人,1987 年)。总体而言,MD 涉及 40 多个基因的突变,这些基因导致不同的发病分子机制(详见 (Mercuri et al., 2019))。除了 MD 之外,在其他病理生理情况下也会观察到肌肉功能缺陷,例如大面积创伤、癌症或肌肉废用导致的萎缩(即身体固定后)(Sartori et al., 2021),或与年龄相关的肌肉质量损失、肌肉减少症(Muñoz-C anoves et al., 2020),这给不同的国家卫生系统带来了沉重的负担。因此,旨在改善生理和病理情况下的肌肉功能的策略和干预措施仍然是科学和医学界面临的关键挑战。在这种背景下,纳米医学提供了大量前所未有的工具,可以彻底改变我们看待骨骼肌疾病再生医学的方式。一方面,组织再生纳米医学利用纳米尺度材料作为药物输送系统 (DDS),利用细胞水平的内源性运输在纳米长度尺度上主动驱动这一事实 (Pozzi et al., 2014)。纳米粒子 (NPs) 的高表面体积比有利于生长因子 (Z. Wang, Wang, et al., 2017)、寡核苷酸 (Roberts et al., 2020)、细胞因子 (Raimondo & Mooney, 2018) 和其他生物活性剂的负载,以促进组织再生,而丰富的表面化学性质允许用靶向配体修饰 NPs,以确保更精确的输送。通过保护其有效载荷免于降解,NPs 可提高其药代动力学和生物利用度 (Fathi-Achachelouei et al., 2019)。就材料组成而言,有机纳米颗粒(即脂质体、聚合物、固体脂质纳米颗粒)具有悠久而成功的临床应用历史,可以保证良好的生物相容性和生物降解性(Colapicchioni,2020 年)。而无机纳米颗粒(即金属、氧化物、碳基、二氧化硅等)则表现出更高的化学稳定性,更容易合成和功能化,并且对内部(pH、温度、氧化还原电位)和外部(光、超声波和磁场)刺激具有良好的响应性(Mclaughlin 等人,2016 年)。此外,这些 NP 的独特光学特性(荧光、等离子体吸光度等)允许它们作为成像剂使用,因为它们允许在纳米图案支架或 DDS 内进行卓越的时空控制。然而,尽管具有这些吸引人的特性,无机 NP 在临床转化方面还不够成熟,而且它们的潜在毒性是一个值得关注的重要问题(Yang 等人,2019 年)。纳米医学彻底改变了骨骼肌再生的第二个领域是生物工程方法。骨骼肌再生研究的很大一部分集中在合成仿生支架以供细胞附着和生长以维持组织重建。纳米级材料的主要优势之一是可以优化这些支架的物理和生物特性,从而实现高度定制的平台。不同的纳米材料被用于优化支架的物理特性(即机械强度、电导性)并提供可控的生物活性剂释放。在这种情况下,纳米纤维支架通过改善系统架构提供拓扑支持以引导肌纤维分化和排列。另一方面,导电支架利用骨骼肌组织的内在兴奋性来调节肌肉细胞的存活、增殖和分化特性(Langridge 等人,2021 年)。本综述概述了纳米材料在肌肉疾病中的应用,重点介绍它们在组织工程方法和作为 DDS 的应用,并探索某些无机 NP 作为免疫调节剂的内在潜力(图 1)。本研究还将讨论该领域的未来前景以及限制这些纳米系统从实验室到临床的有效转化的困难。骨骼肌再生研究的很大一部分集中在合成仿生支架上,用于细胞附着和生长以维持组织重建。纳米级材料的主要优势之一是可以优化这些支架的物理和生物特性,从而实现高度定制的平台。不同的纳米材料被用来优化支架的物理特性(即机械强度、电导性)并提供受控的生物活性剂释放。在这种情况下,纳米纤维支架通过改善系统架构提供拓扑支持以引导肌纤维分化和排列。另一方面,导电支架利用骨骼肌组织的内在兴奋性来调节肌细胞的存活、增殖和分化特性(Langridge 等人,2021 年)。本综述概述了纳米材料在肌肉疾病中的应用,重点介绍了它们在组织工程方法和 DDS 中的应用,并探索了一些无机 NP 作为免疫调节剂的内在潜力(图 1)。本研究还将讨论该领域的未来前景以及限制这些纳米系统从实验室到临床的有效转化的困难。骨骼肌再生研究的很大一部分集中在合成仿生支架上,用于细胞附着和生长以维持组织重建。纳米级材料的主要优势之一是可以优化这些支架的物理和生物特性,从而实现高度定制的平台。不同的纳米材料被用来优化支架的物理特性(即机械强度、电导性)并提供受控的生物活性剂释放。在这种情况下,纳米纤维支架通过改善系统架构提供拓扑支持以引导肌纤维分化和排列。另一方面,导电支架利用骨骼肌组织的内在兴奋性来调节肌细胞的存活、增殖和分化特性(Langridge 等人,2021 年)。本综述概述了纳米材料在肌肉疾病中的应用,重点介绍了它们在组织工程方法和 DDS 中的应用,并探索了一些无机 NP 作为免疫调节剂的内在潜力(图 1)。本研究还将讨论该领域的未来前景以及限制这些纳米系统从实验室到临床的有效转化的困难。