摘要:类胡萝卜素是一种有价值的色素,天然存在于所有光合植物和微藻以及某些真菌、细菌和古细菌中。绿色微藻形成了复杂的类胡萝卜素结构,适合高效采光和防光,并通过内源性 2-C-甲基-D-赤藓糖醇 4-磷酸 (MEP) 途径的强大功能具有强大的类胡萝卜素生产能力。先前的研究建立了成功的基因组编辑,并诱导了莱茵衣藻细胞类胡萝卜素含量的显著变化。本研究采用定制的类胡萝卜素途径来工程化生物生产有价值的酮类胡萝卜素虾青素。番茄红素 ε-环化酶 (LCYE) 的功能性敲除和基于非同源末端连接 (NHEJ) 的供体 DNA 在靶位点的整合会抑制 α-胡萝卜素的积累,从而抑制莱茵衣藻中丰富的类胡萝卜素叶黄素和氯黄素的积累,而不会改变细胞适应性。基于 PCR 的筛选表明,96 个再生候选系中有 4 个携带供体 DNA 的 (部分) 整合,并且 β-胡萝卜素以及衍生类胡萝卜素含量增加。与亲本菌株 UVM4 相比,Cr BKT、Pa crtB 和 Cr CHYB 的迭代过表达导致突变体 ∆ LCYE#3 (1.8 mg/L) 中的虾青素积累增加了 2.3 倍,这表明基因组编辑在设计用于虾青素生物生产的绿色细胞工厂方面具有潜力。
摘要 本研究旨在设计计算机引导RNA(sgRNA),用于CRISPR/Cas9介导的红薯(Ipomoea batatas L.)八氢番茄红素脱氢酶(PDS)基因敲除。IbPDS基因编码区序列长1791个碱基对(bp),相当于572个氨基酸。将IbPDS基因的氨基酸序列与其他邻近植物物种的同源序列进行比较,结果显示,它与Ipomoea triloba和Ipomoea nil的PDS相似性很高,分别为98.60%和97.73%。 CRISPR RGEN Tools 为 IbPDS 基因提供了 113 个结果,筛选出 24 个,并选择了三个 sgRNA 序列用于设计基因编辑载体,它们是 sgRNA 1 (5'-AC- CTCATCAGTCACCCTGTCNGG-3')、sgRNA 2 (5'- CCTCCAGCAGCAGTATTGGTTGGTTTGNGG -3') 和 sgRNA 3 (5'- CTGAACTCTCCTGGTTGGTTGTTNGG -3')。所选 sgRNA 的预测二级结构为靶基因的基因编辑提供了有效的 sgRNA 结构。用于 CRISPR/Cas9 介导的 IbPDS 基因敲除的 PMH-Cas9- 3xsgRNA 载体是使用三个 sgRNA 序列和一个潮霉素抗性标记在计算机上设计的。
在花生中,使用子叶节外植体在 cv. ICGV 15083 中进行农杆菌介导的转化。总共 250 个外植体与 CRISPR/Cas9 构建体共培养,结果 80 个外植体在芽起始培养基下 30-40 天内产生多个芽。分离产生多个芽的外植体,并在芽伸长培养基中每 10-15 天进行一次卡那霉素选择(125 mg/L)继代培养。总共 70 个芽用 Cas9 和 NptII 基因特异性引物进行测试。其中,50 个(约 70%)对 Cas9 和 NptII 基因均呈阳性(图 3)。在这个组中,25 个芽(约 25%)表现出不同程度的白化表型(图 4,表 2)。白化芽在再生后三个月内无法存活。一些
在新型植物育种技术 (NPBT) 中,CRISPR/Cas9 系统是用于靶基因编辑的有用工具,可快速改良植物的性状。该技术允许同时靶向一个或多个序列,以及通过同源定向重组引入新的遗传变异。然而,CRISPR/Cas9 技术对于某些多倍体木本植物来说仍然是一个挑战,因为必须同时靶向需要突变的所有不同等位基因。在这项工作中,我们描述了改进的方案,使用农杆菌介导的转化将 CRISPR/Cas9 系统应用于高丛蓝莓 (Vaccinium corymbosum L.)。作为概念验证,我们靶向编码八氢番茄红素去饱和酶的基因,该基因的突变会破坏叶绿素的生物合成,从而可以直观评估敲除效率。离体培养的蓝莓 cv. 的叶片外植体。 Berkeley 已用 CRISPR/Cas9 构建体进行转化,该构建体包含两个针对 pds 两个保守基因区域的向导 RNA(gRNA1 和 gRNA2),随后在富含卡那霉素的选择培养基中维持。在选择培养基中培养 4 周后,分离出卡那霉素抗性株系,并通过 Sanger 测序对这些株系进行基因分型,结果显示基因编辑成功。一些突变株系包括白化表型,即使两种 gRNA 的编辑效率都很低,gRNA1 的编辑效率在 2.1% 到 9.6% 之间,gRNA2 的编辑效率在 3.0% 到 23.8% 之间。这里我们展示了一种非常有效的高丛蓝莓商业品种“伯克利”的不定芽再生协议,以及在 Vaccinium corymbosum L. 中使用 CRISPR/Cas9 系统的进一步改进,为通过生物技术方法介导的育种开辟了道路。
亲爱的编辑部 芹菜 ( Apium graveolens L.) 是伞形科的一种具有重要经济价值的叶菜作物,在世界各地广泛种植 [1]。生产上需要通过传统或现代分子遗传改良手段对芹菜进行品质、抗病虫害和晚抽薹等改良。常规育种遗传改良受限于育种周期长、随机性,因此基因工程育种的必要性凸显。精准的基因组编辑技术有可能突破常规育种的局限性。另外,芹菜功能基因组学的研究也对基因组编辑技术的发展提出了更高的要求。相对于其他主要作物,遗传转化体系不成熟和基因编辑技术不够发达已成为芹菜基础研究和遗传改良的瓶颈。 CRISPR/Cas9 系统是一种 RNA 引导的基因组编辑工具,由 Cas9 核酸酶和单向导 RNA(sgRNA)组成,可实现高效的靶向修饰[2,3]。由于其高效性和准确性,CRISPR/Cas9 诱导的基因组编辑已广泛应用于多种植物物种,以改善植物抗性和产量,并研究基因在控制农艺性状中的作用[2-4]。本文首次报道成功建立基于 CRISPR/Cas9 的基因组编辑系统,并通过在芹菜品种‘晋南诗芹’中靶向敲除八氢番茄红素去饱和酶基因(AgPDS)来验证该系统的有效性。 PDS 是类胡萝卜素生物合成中的一种限速酶,它催化无色八氢番茄红素转化为ζ-胡萝卜素,ζ-胡萝卜素进一步转化为番茄红素。它通常用作视觉标记来检测
海洋红嗜热菌 (Rhodothermus marinus) 非常适合用于生物精炼,它是一种产生热稳定性酶的嗜氧嗜热菌,能够利用来自不同第二代和第三代生物质的多糖。这种细菌会产生有价值的化学物质,如类胡萝卜素。然而,天然的类胡萝卜素并不适用于工业生产,需要对海洋红嗜热菌进行基因改造才能生产出价值更高的类胡萝卜素。在这里,我们对类胡萝卜素生物合成基因簇进行了基因改造,产生了三种不同的突变体,最重要的是产生番茄红素的突变体 TK-3 (ΔtrpBΔpurAΔcruFcrtB::trpBcrtB T.thermophilus)。基因改造和随后对类胡萝卜素的结构分析有助于阐明海洋红嗜热菌中的类胡萝卜素生物合成途径。编码酶八氢番茄红素合酶 (CrtB) 和之前未鉴定的 10,20-水合酶 (CruF) 的核苷酸序列被发现融合在一起,并由 R. marinus 中的单个基因编码。仅删除基因的 cruF 部分不会产生活性 CrtB 酶。然而,通过删除整个基因并插入嗜热菌的 crtB 基因,获得了突变菌株,产生番茄红素作为唯一的类胡萝卜素。TK-3 产生的番茄红素定量为 0.49 g/kg CDW(细胞干重)。