蛋白质磷酸化或去磷酸化是在所有生物体中发现的信号传递的重要机制。多年来,蛋白激酶和磷酸酶的性质被认为在原核生物和真核生物中是不同的。证明主要发生在组氨酸和天冬氨酸残基上,而相反,通常在丝氨酸,苏氨酸或酪氨酸残基上修饰真核蛋白。然而,近年来在细菌中报道了真核样蛋白激酶和磷酸酶,相反,在真核生物中发现了原核性蛋白质的ASP酶的同源物(有关评论,请参见[1-7])。这些研究表明,真核生物和原核生物可能具有所有类型的信号转导的相似机制。蛋白磷酸酶可以根据其酶特异性(即促磷酸酶和Tyr磷酸酶)分为两组[8,9]。ser} THR磷酸酶在ITRO中显示出广泛的特异性,并已分为四类:PP1,PP2A,PP2B和PP2C,根据保守的基序,它们对抑制剂和离子的抑制剂和离子需求的敏感性[9-11]。氨基酸序列比较表明PP1,PP2A和PP2B是同一PPP家族的成员[10]。PPP家族代表了较高的真核生物中蛋白质ser}的最大蛋白质ser} [12]。这些酶还与对称的折断氨酸四磷酸酶具有序列相似性[13]。被识别的PPP家族的第一个原核生物是噬菌体λ221的乘积[14]。目前,几个成员在ARCHEA和细菌中均已详细介绍[15-19]。但是,关于生理学的数据很少
上皮 - 间质转变(EMT)赋予上皮细胞具有间质和类似茎状的属性,促进转移,这是癌症相关死亡率的主要原因。杂交上皮 - 间质(E/M)细胞保留上皮和间质特征,表现出增强的转移潜力和干性。间充质中间丝,波形蛋白在EMT期间被上调,增强了癌细胞的弹性和侵入性。波形蛋白的磷酸化对其结构和功能至关重要。在这里,我们确定在丝氨酸56处稳定波形蛋白磷酸化会诱导多核,特别是在具有干性特性的杂化E/M细胞中,而不是上皮或间质细胞。癌症干细胞尤其容易受到波形蛋白诱导的多核相对于分化细胞的影响,从而导致自我更新和干性的降低。结果,波形蛋白诱导的多核导致对干性特性,肿瘤起始和转移的持续抑制。这些观察结果表明,波形蛋白中的单个可靶向磷酸化事件对于具有杂化E/M特性的癌中的干性和转移至关重要。
造血干细胞(HSC)是能够无限自我更新的多能细胞,对于整个生命的血液和免疫细胞的产生至关重要。HSC驻留在骨髓中的静止状态,仅在某些刺激后才扩散。杀死这些静止细胞的失败可能导致血液学缺陷,因此,该过程受到多个信号通路的严格调节。最近的研究表明,SER/ THR蛋白磷酸酶可能比以前预期的更多。在这个问题中,LU及其同事表明,蛋白质磷酸PPM1B通过调节WNT/ B-蛋白 - 蛋白信号通路来控制HSC的稳态。使用造血细胞中PPM1B基因的Exon 2的Vav-Cre介导的有条件缺失的转基因PPM1B CKO小鼠模型,它们表明PPM1B对于HSC的增殖是必不可少的。通过限制稀释测定和串行移植实验,进一步证明了ppm1b CKO动物中HSC功能的功能受损。使用PPM1B的小痣抑制剂(HN252 2)以及通过RNA干扰对PPM1B的消耗,在体外概括了来自动物模型的数据。此外,PPM1B CKO小鼠在常见淋巴样祖细胞中也表现出改变,导致B细胞白细胞减少症,而MER MER ELOID谱系未受到影响。此外,谱系-SCA-1 + C-KIT +(LSK)造血干细胞和祖细胞的RNASEQ分析表明,PPM1B CKO动物中包括包括Wnt在内的几种信号通路失调。最后,作者很好地证明了Wnt尤其是,在ppm1b删除PPM1B时,将B -Catenin的几个下游靶标(包括FZD1,JUN,CAMK2B,LRP5,CCND1和GPC4)下调,表明HSC中的缺陷可能是由WNT信号抑制引起的。的确,来自PPM1B CKO动物的LSK细胞显示出B-蛋白质的非活性形式的含量增加,在Ser33/37/Thr41处被磷酸化。
摘要:人类细胞的基因组稳定性依赖于双链 DNA 断裂的有效修复,这主要通过同源重组 (HR) 实现。在各种细胞功能的调节器中,蛋白磷酸酶 4 (PP4) 在协调细胞对 DNA 损伤的反应中起着关键作用。同时,Centrobin (CNTRB) 最初因其与中心体功能和微管动力学相关而受到关注,由于其对 DNA 修复过程的潜在贡献而引起了人们的兴趣。在本研究中,我们研究了 PP4 及其与 CNTRB 的相互作用在人类细胞中 HR 介导的 DNA 修复中的作用。我们采用一系列实验策略,研究了 PP4 和 CNTRB 之间的物理相互作用,并阐明了 CNTRB 中的两个特定基序(PP4 结合 FRVP 和 ATR 激酶识别 SQ 序列)在 DNA 修复过程中的重要性。此外,我们研究了 PP4 或 CNTRB 缺失的细胞以及 CNTRB 中含有 FRVP 和 SQ 突变的细胞,这些细胞会导致类似的异常染色体形态。这种现象可能是由于霍利迪连接体的分解受损所致,而霍利迪连接体是 HR 中的关键中间体。总之,我们的研究结果为 PP4 和 CNTRB 调节的 HR 修复的复杂机制及其相互关系提供了新的见解。
摘要 芽殖酵母的有丝分裂退出取决于有丝分裂纺锤体沿细胞极性轴的正确定位。当纺锤体无法准确定位时,一种名为纺锤体位置检查点 (SPOC) 的监视机制会阻止细胞退出有丝分裂。具有缺陷 SPOC 的突变体会变成多核并失去其基因组完整性。然而,对 SPOC 机制的全面了解尚不足。在本研究中,我们确定了 1 型蛋白磷酸酶 Glc7 与其调节蛋白 Bud14 相关联,这是一种新的检查点成分。我们进一步表明,Glc7-Bud14 促进了 SPOC 效应蛋白 Bfa1 的去磷酸化。我们的结果表明,两种机制并行作用以产生强大的检查点反应:首先,SPOC 激酶 Kin4 将 Bfa1 与抑制激酶 Cdc5 隔离开来,其次,Glc7-Bud14 使 Bfa1 去磷酸化以完全激活检查点效应物。
磷蛋白磷酸酶-1 (PP1) 是调节磷酸丝氨酸 (pSer) 和磷酸苏氨酸 (pThr) 去磷酸化的关键因素,参与大量细胞信号通路。PP1 的异常活性与许多疾病有关,包括癌症和心力衰竭。除了调节蛋白控制活性的明确机制外,还已证实 PP1 C 端固有无序尾部中 Thr 残基的磷酸化 (p) 具有抑制功能。人们反复提出,细胞周期停滞的相关表型是由于 PP1 通过构象变化或底物竞争而自我抑制所致。在这里,我们使用由突变和蛋白质半合成产生的 PP1 变体来区分这些假设。我们的数据支持以下假设:pThr 通过介导蛋白质复合物形成而不是通过结构变化或底物竞争的直接机制发挥其抑制功能。