在 WAAM 等 DED 工艺中,计算机辅助制造 (CAM) 系统用于使用计算机辅助设计 (CAD) 数据生成沉积路径。用于加工工艺的通用 CAM 系统输出加工后的三维 (3D) 形状。用于 AM 工艺的商用 CAM 系统也可以在构建过程之后绘制 3D 形状;但是,用户必须手动输入焊珠几何形状,并且估计精度不够高,因为焊珠几何形状取决于各种因素,例如工艺参数、目标形状和位置。在给定上下文中,目标形状是指目标形状是否悬垂的情况(Abe 和 Sasahara,2015 年;Sasahara 等,2009 年),位置对应于熔池在
摘要。使用定向能量沉积 (DED) 工艺(例如电弧增材制造 (WAAM))制造零件时,需要确定沉积路径和操作参数(送丝速度、焊枪速度、能量)。虽然操作参数会影响制造的焊珠的几何形状,但沉积轨迹会影响这些焊珠排列以填充目标形状的方式。焊珠几何形状对热条件(难以准确管理)的强烈依赖性使得选择适当的参数变得复杂。可以通过多种方式解决该问题,本文提出了一种根据零件的当前状态(模拟或测量)和制造或几何约束确定轨迹和操作参数的方法。提出的方法分为两个阶段:
对于任务5(物体和水输送),ASV配备了水枪,当它检测到船的结构和黑色三角形时,它将连续喷涂。ASV将自身定位在正确的距离,以确保喷嘴的目的有效地针对该区域。而不是在船上存储水,而是将其直接从周围环境中泵送,有助于减轻体重并提高稳定性。此外,ASV具有“球枪”,该“球枪”将用于在目标形状上射击南瓜球。球枪和水枪都将保持不活跃,直到目标在框架内稳步持续至少3秒钟,并保持在一定的运动范围内。这确保了精确的靶向目标,并最大程度地减少了来自意外对象或运动的任何干扰。
易于解除的概念只能通过概念来实现。[1-3]已经在许多尺度和不同的外部触发器上研究了设备中特定形状变形行为的实现。[4]一方面,在系统级别上有许多方法通常由电动机[3,5]压电剂[6,7]或多物质系统驱动,例如,二型。[8]另一方面,通过适应微结构的几何形状可以实现形状变形。这可以在原子量表上进行,例如,使用相变和梯度以及μm -cm水平。多年来,在材料中设计了诸如Poisson的比率(PR)和Young模量之类的线性有效属性。[9] Greaves等。[10]介绍了结构并实现属性的概述。在1990年代已经显示了极端材料的弹性张量,[11]但是它们的实际实力主要是近年来制造技术的发展驱动的。在超材料中,定期布置的单元细胞的特性克服了自然界中发现的特性[12,13](例如,负PR [14-16]和高刚度 - 重量率[17])。此外,添加剂制造可以轻松地更改材料本地单元单元的几何特征(梁厚度,角度)。这种方法可以使所谓的渐变材料中材料特性的不均匀分布,在加载过程中可能导致不同的形状。可以用处理函数和如果以前的条件来描述这种行为。[18–21]设计形状变形行为不仅需要控制恒定属性,而且还需要控制它们进化的方式,例如菌株依赖性PR。在本文中,我们提出了在单位细胞中整合机械机制的不同方式,从而导致各种非线性弹性(但仍然受控)行为。细胞已组装成宏观材料,并且通过适应晶胞的几何参数的适应,局部调整了功能和条件。分布在材料中的不同特性(刚度,PR)的组合导致垂直于施加载荷的特定形状,也显示在参考文献中。[18,19]。此外,逻辑语句允许我们对材料形状进行全局程序。在下文中,我们将显示三种情况如何从增加应变下从初始形状转换为目标形状(见图1)。在第一种情况下,目标形状