摘要。探索了通过熔丝制造和烧结技术生产高碳钢/Inconel 718 双金属零件的可能性。分析了两种合金的兼容性,特别关注元素通过界面的相互扩散以及沉积策略的影响。研究了微观结构特征、相对密度和零件收缩。虽然最初的试验工艺参数值不足以达到可接受的材料致密化,但观察到 Inconel 718 和碳钢之间良好的结合,这表明有可能获得具有多种材料性能的完美双金属零件。由于致密化动力学的差异,烧结温度被发现是优化以最小化孔隙率的最关键工艺参数。关键词。增材制造、熔丝沉积、双金属材料、Inconel 718、高碳钢、微观结构、相互扩散、缺陷。
纳米技术,Academiei str。,3/3,Chisinau,摩尔多瓦阐述了两个主要人工神经网络元素 - 非线性开关(神经元)和线性连接元件(Synapse)是基于分层杂交结构[1]。这种结构的相关性取决于技术能力的发展以及改变过渡特征的便利性。在最简单的情况下,在由三个功能层组成的最简单情况下,平面约瑟夫森结的形成是基于多层超导异质结构的形成。实际上,在超导异质结构的形成期间,约瑟夫森过渡的所需特征是规定的。超导体两层之间包围的中间层或中间层完全决定了当前运输的机理,并因此是约瑟夫森交界处的特征[2]。形成超导异质结构的最方便的方法是材料溅射的方法。在真空安装中有几个磁子的情况下,这种方法使得可以在单个真空周期中形成超导异质结构,从而完全消除了在层的界面上引入其他污染物的引入。磁铁溅射方法的特征是该过程的相对较低的能量,这实际上消除了层界面处的相互扩散,尤其是难治性材料的相互扩散,并在超导导异质结构的形成过程中提供了边界的原子清晰度。020201。这项研究得到了“纳米结构和高级材料,用于实施旋转三位型,热电学和光电”»no。
摘要:我们进行了广泛的理论和实验研究,以确定短周期 GaN/AlN 超晶格 (SL) 中 GaN 和 AlN 层之间的界面相互扩散对拉曼光谱的影响。通过从头算和随机元等位移模型框架,模拟了具有尖锐界面和不同界面扩散程度的 SL 的拉曼光谱。通过对 PA MBE 和 MOVPE 生长 SL 的理论计算结果与实验数据的比较,表明与 A 1 (LO) 限制声子相关的能带对界面扩散程度非常敏感。结果获得了 A 1 (LO) 限制声子范围内的拉曼光谱与 SL 中界面质量之间的相关性。这为使用拉曼光谱分析短周期 GaN/AlN SL 的结构特征开辟了新的可能性。
摘要 — 这项工作提出了一种新方法,将微/纳米级多孔铜反蛋白石 (CIO) 融入 Sn 基焊料微凸块中,与低温 CMOS 后端 (BEOL) 工艺兼容。微孔结构可使临界孔径小至 5 μm 甚至小至 200 nm(基于凸块尺寸)。这种多孔辅助键合技术具有巨大潜力,可提高细间距 Cu/Sn 键合界面的热导率和机械可靠性。在这项工作中,我们已成功制造并展示了直径为 100 μm 的 Cu 凸块上孔径为 3 μm 的基于 CIO 的微孔结构,实现了 3 μm - 5 μm 的目标厚度,这通过聚焦离子束显微镜 (FIB) 分析得到证实。Cu-CIO 和 Sn 焊料键合界面的微观结构和元素映射表明,熔融焊料可以渗透这些铜 CIO 微孔结构。这样,微凸块就可以通过毛细力进行自对准,形成坚固的机械相互扩散键。此外,采用简化的有限元法 (FEM) 表明,基于 CIO 的微/纳米多孔铜基质结构有可能将 Cu/Sn 键合层的等效热导率提高 2-3 倍。
熔融沉积成型 (FDM),也称为熔融长丝制造 (FFF),是增材制造领域最成熟的技术之一,由于使用和维护成本低 [1],在低熔点聚合物中广受欢迎。进料材料以长丝形式通过加热喷嘴进料,并逐层沉积在表面上。商用热塑性塑料如丙烯腈丁二烯苯乙烯 (ABS)、聚碳酸酯 (PC)、尼龙、聚乳酸 (PLA) 及其组合经常用于生产 FDM 部件 [2]。虽然可以实现高度复杂的几何形状,但这会引发相对于块体材料的三种主要强度降低机制 [3]:(i) 由于空隙导致横截面积减小。仅此一项就已证明对抗拉强度有巨大影响 [4]。(ii) 空隙引起的应力集中。基于这一观察,Xu 和 Leguillon [5] 提出了双缺口空隙模型来解释 3D 打印聚合物的各向异性拉伸强度。(iii)聚合物链的不完全相互扩散。与几何方面无关,这会降低材料本身在细丝边界处的强度 [1] 。这三种现象由大量工艺参数控制,这些参数的强大影响和复杂相互作用超出了我们目前的知识范围,是一个活跃的研究领域。Cuan-Urquizo 等人 [6] 确定了两大类参数,即制造参数(例如喷嘴温度和打印速度)以及结构参数,
使用功能材料的波浪操作提出了材料物理学的显着目标。早在2011年,出现了一系列的人工材料,显示了Snell定律的概括,随后被利用进行光波处理[1]。设计二维(2D)材料的新兴领域为各种引人入胜的光波工程能力提供了新的自由度[2-11],例如极化控制[2,3],光弯曲[4,5],无异常的传输和反射[12,13]和完美[12,13]和6,6,6,6,6,6,6,7)。受到光学上的开创性发现的启发,也已经开发出声学间质材料[14-19],以实现有趣的新现象,例如声学弯曲[14]和不对称的繁殖[15]。这些超材料因此丰富了有关波浪传播的现有典型物理定律的数量。声子既表现出波浪状和粒子样特征[20,21]。粒子样特征已从不相互扩散理论(例如玻尔兹曼传输方程[22-24])中得到充分理解,并且可以通过各种散射来源控制[25 - 28]。另一方面,其波动性质的重要性,即连贯的声子方面,在过去十年中也得到了认可[29 - 34]。然而,在显微镜水平上,原子之间的复杂相互作用可能会改变波浪行为的局部控制策略[35],并且仍然缺乏调节晶格波的有效手段。此外,与声波相反,有两个与光波和声波不同,声子具有波粒对偶的性质,因此必须使用具有限制性宽阔的声子波动图片,而纯平面波形不适用,而必须使用。
复合材料的力学性能并不令人满意,最初认为是由于Al层和Ag基体之间的相互扩散所致[22]。2011年,Gogotsi和Barsoum[23-24]合作通过从母体Ti3AlC2中选择性刻蚀掉Al原子平面,制备出一种具有二维结构的新型碳化物材料(Ti3C2Tx),称为MXenes。目前,Ti3C2Tx已受到许多应用领域的广泛关注[25-29]。Ti3C2Tx具有大的比表面积、良好的电导性、导热性和亲水性[30],是一种很有前途的导电复合材料增强体。具体来说,Ti3C2TX 已展示出其作为聚合物(PVA、PAM、PEI、PAN 等)、陶瓷(MoS2、TiO2 等)和碳材料(CNT、MWCNT、CNFs 等)复合材料添加剂的潜力[31]。因此,导电 Ti3C2TX 有望增强 Ag 基体成为一种新型电接触材料。本研究探索了 MXenes 在电接触材料中的应用。采用粉末冶金法制备了 Ti3C2TX 增强 Ag 基复合材料,研究了其电阻率、硬度、机械加工性、拉伸强度、抗电弧侵蚀等综合性能,并与 Ti3AlC2 陶瓷增强 Ag 基复合材料进行了比较。对两类样品性能差异的机理进行了分析和总结。研究结果将为今后新一代环保型银陶瓷复合电接触材料的设计与制备提供重要数据。
[J18] Ware LG、Suzuki DH、Cordero ZC †。“定向凝固双晶中弯曲晶界的热力学稳定性和运动学可达性”,材料科学杂志,55:8564–8575 (2020)。[J17] Moustafa AR、Durga A、Lindwall G、Cordero ZC †。“用于设计增材制造功能梯度金属的 Scheil 三元投影 (STeP) 图”,增材制造,32:101008 (2020)。[J16] Poole LL、Gonzales M、French MR、Yarberry WA、Moustafa AR、Cordero ZC †。 “PrintCast A356/316L 复合材料的超高速冲击”,国际冲击工程杂志,136: 103407 (2020)。[J15] Ward AA、Cordero ZC †。“多材料层压板超声波增材制造过程中的结生长和相互扩散”,Scripta Materialia,177: 101-105 (2020)。[J14] Carazzone JR、Bonar MD、Baring HW、Cantu MA、Cordero ZC †。“约束烧结中开裂的原位观察”,美国陶瓷学会杂志,102:602-610 (2019)。[J13] Ward AA、Zhang Y、Cordero ZC †。 “超声波点焊和超声波增材制造中的结生长”,Acta Materialia,158: 393-406 (2018)。[J12] Moustafa AR、Dinwiddie RB、Pawlowski AE、Splitter DA、Shyam A、Cordero ZC †。“介观结构和孔隙率对增材制造金属复合材料热导率的影响”,Additive Manufacturing,22: 223-229 (2018)。[J11] Ware LG、Suzuki DH、Wicker KJ、Cordero ZC †。“定向凝固双晶和三晶中的晶界操控”,Scripta Materialia,152: 98-101 (2018)。[J10] Ward AA、French MR、Leonard DN、Cordero ZC †。 “纳米晶合金超声波焊接过程中的晶粒生长”,材料加工技术杂志,254:373-382 (2018)。[J9] Pawlowski AE*、Cordero ZC* †、French MR、Muth TR、Dinwiddie RB、Carver KR、Shyam A、Elliott AM、Splitter DA。“通过熔体渗透增材制造预制件生产耐损伤金属复合材料”,材料与设计,127:346-351 (2017)。* = 作者贡献相同[J8] Cordero ZC †、Siddel DH、Peter WH、Elliott AM。“通过青铜渗透增强铁质粘合剂喷射 3D 打印部件的强度”,增材制造,15:87-92 (2017)。 [J7] Cordero ZC † 、Dinwiddie RB、Immel D、Dehoff RR。“电子束增材制造过程中烟囱孔的成核和生长”,材料科学杂志,52:3429-3435 (2017)。[J6] Cordero ZC † 、Meyer III HM、Nandwana P、Dehoff RR。“电子束增材制造过程中的粉末床充电”,Acta Materialia,124:437-445 (2017)。[J5] Cordero ZC 、Knight BE、Schuh CA †。“Hall-Petch 效应六十年——纯金属晶粒尺寸强化研究综述”,国际材料评论,61:495-512 (2016)。 [J4] Cordero ZC、Carpenter RR、Schuh CA、Schuster BE†,“超细晶粒钨合金的亚尺度弹道测试”,国际冲击工程杂志,91:1-5 (2016)。[J3] Huskins EL、Cordero ZC、Schuh CA、Schuster BE†。“粉末微柱压缩测试”,材料科学杂志,50:7058-7063 (2015)。