本文讨论了一种环耦合降压型逆变器系统,该系统利用直流电源的能量。DC-DC 降压转换器电路经过 H 桥改造,可将直流输入电压转换为可用的交流输出电压。基于无源性的控制 (PBC) 和端口控制汉密尔顿模型 (PCHM) 是一种在控制系统时不仅考虑系统的能量特性,还考虑固有物理结构的方法。应用 PBC 可将交流输出电压稳定在所需的幅度和频率。相位角或频率不同步的输出电压会对系统造成不利影响。环结构采用 PLL 来保持环耦合系统中所有逆变器单元的交流输出电压同步。
在本研究中,我们研究了人机交互 (HRI) 促进的正念冥想对大脑活动的影响。我们从两组参与者那里收集了脑电图信号:冥想组与社交机器人一起进行正念冥想,对照组只听机器人讲课。我们通过计算 HRI 会话期间的脑电图相位同步来比较两组之间的大脑功能连接。结果显示,冥想组的 beta 频带整体相位同步明显较低,这之前曾被报道为有经验的冥想者的认知处理减少和达到正念状态的迹象。我们的研究结果证明了社交辅助机器人 (SAR) 在心理健康护理和优化干预效果方面的潜力。此外,我们的研究提出了客观监测 HRI 对用户神经生理反应影响的新方法。
合作者,包括供应和用户计时社区以及学术界和政府,因为它扩大了这项研究的范围 [Curry,2011,2014]。这项研究借鉴了过去十年在两个项目 GAARDIAN 和 SENTINEL 过程中进行的研究,这两个项目得到了英国创新机构 Innovate UK 的支持。它演示了一种使用 eLoran 信号分发“国家时间表”的方法。这将是为多种应用分发 UTC 可追溯时间的简单可靠方法,特别是在室内和其他 GNSS 拒绝环境中,这些环境需要弹性和准确的时间,相位同步和时间稳定到 UTC。这项研究表明,如何长期保持这种精度和稳定性,误差在 UTC 的 100 纳秒以内,从而满足目前公认的电信传输网络主要参考时钟的 ITU 标准。
可靠且准确的同步交付对于满足多个市场领域的严格任务应用程序(例如国防,移动回程,电力公用事业和广播)的严格要求至关重要。网络运营商需要一个可靠的可扩展解决方案,以提供确保的阶段,频率和时间同步。但是,以具有成本效益的方式实现这一目标提出了重大挑战。我们的OSA 5422是一种多功能且精确的同步设备,旨在满足新兴应用程序等新兴应用程序的严格频率和相位同步需求,同时还支持其他市场需求,例如IRIG,BITS,COMPESITER,CC/JCC(CC/JCC),以及诸如Tri-Level和Black Burst的广播信号。其紧凑而灵活的设计(用于在网络边缘部署中进行了优化,可确保可靠且具有成本效益的同步很容易实现。OSA 5422,配备了
TFP401/401A 从 DVI 发送器接收时钟参考,其周期等于像素时间 t pix 。此时钟的频率也称为像素速率。由于 Rx[2:0] 上的 TMDS 编码数据每 8 位像素包含 10 位,因此 Rx[2:0] 串行比特率为像素速率的 10 倍。例如,支持刷新率为 60 Hz 的 UXGA 分辨率所需的像素速率为 165 MHz。TMDS 串行比特率为像素速率的 10 倍,即 1.65 Gb/s。由于此高速数字比特流在长距离(3-5 米)的三个独立通道(或双绞线)上传输,因此无法保证数据流与输入参考时钟之间的相位同步。此外,三个数据通道之间通常存在偏差。TFP401/401A 对输入数据流采用 4 倍过采样方案,以实现可靠的同步,通道间偏差容差高达 1-t pix。由于反射和外部噪声源导致时钟和数据线上的累积抖动也是高速串行数据传输的典型特征;因此,TFP401/401A 设计具有高抖动容差。
I.简介阶段同步是5G新无线电(NR)毫米波(MMWave)通信系统性能的关键组成部分。准确的相位同步对于保持通信的可靠性和效率至关重要,尤其是在MMWave频段内,通常从24 GHz到100 GHz。这些高频带实现了前所未有的数据速率和带宽,这对于满足对高速无线连接的需求不断增长至关重要。5G-NR的演变在很大程度上依赖于MMWave技术来提供增强的移动宽带服务,超可靠的低潜伏期通信和大规模的机器型通信,从而解决了传统频带的容量限制[1-3]。但是,5G-NR MMWAVE网络的部署伴随着重大挑战,尤其是在相位误差的准确估计和补偿中。这些错误来自各种来源,包括振荡器缺陷,通道效应和硬件障碍,所有这些都会引起常见相位误差(CPE)。CPE估计和补偿对于确保MMWave系统中可靠的通信至关重要,因为即使是较小的相位偏差也会大大降低系统性能,从而导致错误率提高和信号质量降低[4]。
摘要:本研究的目的是检查功率谱并探索注意力表现过程中的功能性大脑连接/断开情况,以注意力 d2 测试和创造力测试为衡量标准,以正常发育儿童的 CREA 测试为衡量标准。为此,我们通过使用相位同步性(即锁相指数 (PLI))对 15 名 9 至 12 岁儿童通过 Emotiv EPOC 神经耳机获取的 EEG 信号进行检查来检查大脑连接。此外,作为补充,还对获取的信号进行了功率谱分析。我们的结果表明,在 d2 测试过程中,全局伽马相位同步增加,而全局 alpha 和 theta 波段去同步。相反,在 CREA 任务期间,功率谱分析显示 delta、beta、theta 和 gamma 波段显著增加。连接分析显示 theta、alpha 和 gamma 明显同步。这些发现与其他神经科学研究一致,表明多种大脑机制确实与创造力有关。此外,这些结果对于在临床和研究环境中评估注意力功能和创造力以及对具有正常和非正常发育的儿童的神经反馈干预具有重要意义。
神经同步是指神经元群与外部节律刺激(例如经颅交流电刺激 (tACS))的相位同步。tACS 会对人类行为产生深远影响。然而,仍有大量研究发现,tACS 应用于人类受试者时不会产生行为影响。为了研究这种差异,我们对来自大鼠运动皮层的单个单元数据应用了基于时间敏感锁相值 (PLV) 的分析。分析表明,神经同步的检测主要取决于脉冲信息积累的时期长度。增加时期长度可以检测到逐渐减弱的神经同步水平。基于这种单个单元分析,我们假设 tACS 对人类行为的影响在使用更长时期长度的行为范式中更容易检测到。我们通过使用 tACS 来同步患者和健康志愿者的震颤来测试这一点。当使用短时间周期分析行为数据时,无法检测到震颤同步效应。然而,随着周期长度逐渐增加,可以检测到微弱的震颤同步。这些结果表明,依赖于长周期长度信息积累的 tACS 行为范式往往会成功检测到行为效应。然而,依赖于短周期长度的 tACS 范式不太可能检测到效应。
严重中风后的运动功能恢复通常很有限。然而,一些严重受损的中风患者可能仍然具有康复潜力。识别这些患者的生物标志物很少。18 名严重受损且缺乏随意手指伸展能力的慢性中风患者参加了一项脑电图研究。在 66 次运动意象试验中,脑机接口将与事件相关的同侧感觉运动皮层的 β 波段去同步化转变为机器人矫形器对瘫痪手的张开。八名患者的亚组参加了随后的四周康复训练。运动范围的变化通过传感器捕捉到,这些传感器可以客观地量化腕部运动的哪怕是离散的改善。尽管运动障碍程度相同,但患者可以分为两组,即有和没有与任务相关的额叶/运动前区和顶叶区域之间的双侧皮质-皮质相位同步增加。这种额顶叶整合 (FPI) 与同侧感觉运动皮质中明显更高的意志 beta 调制范围有关。经过四周的训练,接受 FPI 的患者腕关节运动能力的改善明显高于未接受 FPI 的患者。此外,只有前者在上肢 Fugl-Meyer 评估评分方面有显著改善。神经反馈相关的长程振荡相干性可能区分严重受损的中风患者,了解他们的康复潜力,这一发现需要在更大的患者群体中得到证实。
I. 简介 深空通信系统在非常远的距离内运行,而机载能量发生器的容量非常有限,导致接收端的信噪比 (SNR) 非常低。这就是使用接近香农极限的纠错码的原因。然而,为了利用这种增益,必须进行相干解调,并且必须在更严格的 SNR(对于 Turbo 码 1/6,𝐸 𝑠 /𝑁 0 ≃ – 8 dB)下提供载波相位同步。分配给深空任务的频谱资源是有限的(X 波段 8 GHz),为了优化频谱效率,空间数据系统咨询委员会(CCSDS)建议 [1] 对于 B 类任务(深空任务)使用预编码 GMSK 调制(高斯最小频移键控),高斯滤波器带宽位周期积𝐵𝑇 𝑏 = 0.5,对于 A 类任务(低空任务)使用 GMSK 𝐵𝑇 𝑏 = 0.25。本文讨论了一种由最大后验(MAP)准则和洛朗展开式 [3] 衍生的用于 GMSK 调制的盲相位检测器 [2]。为了评估该相位检测器在非常低的 SNR 下在闭环结构中的性能,我们考虑了 [4] 和 [5] 中描述的另外两个简化版本。我们对线性和非线性域中的这三种不同结构进行了全面研究。我们还介绍了使用低速率纠错码(Turbo 1/6)进行计算机模拟所获得的结果。这项工作的目的是比较这三个相位检测器的性能,并评估为获得两个简化版本而进行的简化的影响。