摘要 量子探测是利用简单量子系统与复杂环境相互作用来提取某些环境参数(例如环境温度或其光谱密度)的精确信息的技术。在这里,我们分析了单量子比特探测器在表征热平衡下的欧姆玻色子环境方面的性能。特别是,我们分析了调整探测器与环境之间的相互作用哈密顿量的影响,超越了传统的纯相位失调范式。在弱耦合和短时间范围内,我们以分析方式处理探测器的动力学,而在强耦合和长时间范围内则采用数值模拟。然后,我们评估量子 Fisher 信息以估计截止频率和环境温度。我们的结果提供了明确的证据,表明纯相位失调不是最佳的,除非我们将注意力集中在短时间内。特别是,我们发现了几种工作方式,其中横向相互作用的存在提高了最大可达到的精度,即增加了量子 Fisher 信息。我们还探讨了探针的初始状态和探针特征频率在确定估计精度中的作用,从而为设计优化检测以在量子水平上表征玻色子环境提供定量指导。
我们对由许多相同的量子单元组成的量子电池在噪声下的能量回收效率进行了理论分析。虽然利用量子效应加速电池充电过程的可能性已被广泛研究,但为了将这些想法转化为工作设备,评估量子电池元件在接触环境噪声时存储相的稳定性至关重要。在这项工作中,我们将这个问题形式化,引入了一系列操作上定义良好的性能系数(工作电容和最大渐近工作/能量比),这些性能系数衡量了从由大量相同和独立元素(量子单元或 q 单元)组成的量子电池模型中回收有用能量所能达到的最高效率。对于能量存储系统经历相位失调和去极化噪声的情况,给出了这些量的明确评估。
了解开放量子系统中的耗散是否真正是量子的,是一个既有基础意义又有实际意义的问题。我们考虑 n 个量子比特受到相关马尔可夫相位失调的影响,并提出一个充分条件,说明何时由浴引起的耗散可以产生系统纠缠,因此必须被视为量子的。令人惊讶的是,我们发现时间反演对称性 (TRS) 的存在与否起着至关重要的作用:耗散纠缠的产生需要破坏的 TRS。此外,仅仅具有非零浴敏感性不足以使耗散成为量子。我们的工作还提出了一种明确的实验协议来识别真正的量子相位失调耗散,并为研究更复杂的耗散系统和寻找最佳的噪声缓解策略奠定了基础。
我们讨论一个特殊情况,其中开放量子系统可用作复杂系统新特性的量子探针,如热浴的温度。量子探针固有的抗退相干性是使整个方案非常敏感的关键特征。这里研究的具体设置是量子测温法,旨在利用退相干作为资源来估计样品的温度。我们专注于欧姆区(从亚欧姆到超欧姆)平衡的玻色子浴的温度估计,通过使用不同初始状态的量子比特对并与不同环境相互作用,由单个热浴或两个相同温度的独立热浴组成。我们的方案涉及探针的纯相位失调,从而避免与样品的能量交换以及随之而来的温度本身的扰动。我们讨论了探针之间的相关性的作用以及局部浴与全局浴的存在。我们表明,如果两个量子位嵌入在一个公共槽中,那么纠缠可以在短时间内改善温度测定,而如果交互时间不受限制,那么相干性而不是纠缠才是量子温度测定的关键资源。