摘要。多体系统的量子混沌已迅速发展成为一个充满活力的研究领域,涉及从统计物理学到凝聚态物理、量子信息和宇宙学等各个学科。在具有经典极限的量子系统中,先进的半经典方法提供了经典混沌动力学与量子层面上相应的普遍特征之间的关键联系。最近,处理通常的半经典极限 ℏ → 0 中的遍历波干涉的单粒子技术已经开始转变为类似半经典极限 ℏ eeff = 1 /N → 0 中的 N 粒子系统的场论领域,从而解释了真正的多体量子干涉。这种半经典多体理论为理解单粒子和多体量子混沌系统的随机矩阵相关性提供了一个统一的框架。某些经典轨道和平均场模式的编织束分别控制干涉,并为普遍性的基础提供了关键。所提出的案例研究包括 Gutzwiller 谱密度迹公式和不按时间顺序的相关器的多体版本,以及关于可能取得进一步进展的简要评论。
完全受挫阶梯——准一维几何受挫自旋一半海森堡模型——不可积,阶梯横档上的局部守恒量为局部守恒量,导致希尔伯特空间局部分裂为横档上由单重态和三重态组成的区段。我们通过纠缠熵和非时序相关器 (OTOC) 探索该模型的远离平衡态动力学。纠缠熵的后淬灭动力学非常异常,因为它显示出从短连接三重态块中出现的清晰的无阻尼复兴。我们发现熵的最大值来自于这样一幅图像,其中不同碎片之间的相干性与每个碎片内的完美热化共存。这意味着本征态热化假设在所有足够大的希尔伯特空间碎片中都成立。 OTOC 显示由短耦合碎片引起的短距离振荡,这些振荡在较长距离处变得不相干,并且由于与碎片相关的新出现的长度尺度而导致亚弹道扩散和长距离指数衰减。
人们普遍认为宇宙的结构起源于加速膨胀早期的量子涨落。然而,我们今天观察到的模式并不能区分量子涨落和经典的原始涨落;目前的宇宙学数据与这两种可能性都一致。我们在此认为,检测原始非高斯性可以解决目前的情况,并为宇宙结构的量子起源提供试金石。与量子力学不同,真空涨落不能出现在经典理论中,因此长距离经典关联必须来自初始状态的(真实)粒子。与平坦空间散射过程类似,我们展示了基本原理如何要求这些粒子在所谓的折叠配置中表现为 n 点函数中的极点。根据这一观察,并假设涨落 (i) 在大尺度上相关,(ii) 由膨胀阶段的局部演化产生,我们证明非高斯相关器的折叠极限中没有极点唯一地标识了量子真空是初始状态。本着与贝尔不等式相同的精神,我们讨论了如果放弃局部性,如何能避免这种情况。
摘要:我们表明,量子混乱的最重要度量,例如框架电势,争夺,Loschmidt Echo回声和超级阶段相关器(OTOC),可以通过异形旋转的统一框架来描述,即K-flold Unitary Channel的Haar平均值。我们表明,这样的措施可以始终以同感旋转的期望值的形式施放。在文献中,有时会通过频谱和其他时间通过汉密尔顿人产生动力学的特征向量来研究量子混乱。我们表明,借助这项技术,我们可以在可联合的哈密顿量和量子混沌汉密尔顿人之间平稳地插入。与特征向量稳定剂状态的哈密顿人的同一旋转不具有混乱的特征,这与那些从HAAR措施中获取特征向量的汉密尔顿人不同。作为一个例子,与通用资源相比,Clifford Resources腐烂到更高的值获得的OTOC。通过掺杂哈密顿人的非克利福德资源,我们在一类可集成模型和量子混乱之间的OTOC行为中显示了一个交叉。此外,利用随机矩阵理论,我们表明,量子混乱的这些度量清楚地将探针的有限时间行为与量子混乱区分为与高斯单位合奏(GUE)相对应的量子混乱,并将其与Poisson分布和高斯分布和高斯对数(Gaussian diagonal)(GDE)(GDE)(GDE)(gde)所给出的集成光谱。
我们研究了杂质在混沌介质中移动的随机幺正电路模型。介质和杂质之间的信息交换通过改变杂质的速度vd (相对于信息在介质中传播的速度v B )来控制。在超音速以上,vd > v B ,信息在进入介质后无法流回杂质,由此产生的动力学是马尔可夫的。在超音速以下,vd < v B ,杂质和介质的动力学是非马尔可夫的,信息能够流回杂质。我们表明,这两个状态由连续相变分隔,其指数与介质中算子的扩散扩展直接相关。通过监测非时间序相关器(OTOC),在中间时间替换杂质的场景中证明了这一点。在马尔可夫阶段,来自介质的信息无法转移到被替换的杂质上,表现为没有显著的算子发展。相反,在非马尔可夫阶段,我们观察到算子获得了对新引入的杂质的支持。我们还使用相干信息来表征动态,并提供两个解码器,可以有效地探测马尔可夫和非马尔可夫信息流之间的转换。我们的工作表明,马尔可夫和非马尔可夫动态可以通过相变来分离,我们提出了一种观察这种转变的有效协议。
了解量子多体系统的动力学仍然是一个至关重要的问题,其应用从凝结物理学到量子信息。在数值和分析上,计算动力学数量(例如相关函数和纠缠增长)是一个众所周知的困难问题。近年来,统一电路已经超越了量子计算模型,以最小模型,以研究由局部相互作用控制的一般大学动力学的研究[1-8]。一类特殊的此类电路,称为双统一电路,仍然可以通过精确的计算[9,10]。这些电路是通过基本的时空二元性来表达的,从而导致时间和空间中的单一动力学。这种二元性允许精确计算局部可观察物的相关函数动态[9,11-14],超阶相关器[15,16],纠缠[10,17],量子混乱[18 - 21]的指标[18 - 21],以及双重独立的电路和自然是活跃的理解的主题[22 - 38]和实验[22 - 38]和实验[39] [39] [39] [39] [39] [39] [39] [39] [39] [39] [39] [39] [39] [39]超越了封闭量子系统的纯统一动力学,电路模型还通过在时空中给定点引入投影测量值,为非自然动态提供了自然的游戏场。随着微调率的提高,此类系统可能会经历从体积法的过渡到稳态
量子计算可能会提供机会,以随着物理时间的进化来模拟强烈相互作用的场理论,例如量子染色体动力学。这将使访问Minkowski-Signature的相关器,与目前进行的欧几里得计算相反。但是,与当今的计算一样,量子计算策略仍然需要限制有限的系统大小,包括有限的,通常是周期性的空间量。在这项工作中,我们研究了这在提取腺形和类似康普顿的散射幅度时的后果。使用Briceño等人中提出的框架。[物理。修订版d 101,014509(2020)],我们估计各种1 d Minkowski签名量的体积效应,并表明这些量可能是系统不确定性的重要来源,即使对于当今欧几里得计算标准的体积也很大。然后,我们提出了一种改进策略,基于有限体积的对称性减少。这意味着产生相同洛伦兹不变的运动点在周期系统中仍可能在物理上不同。我们所证明的是,在数值和分析上,在此类集合上平均都可以显着抑制不需要的体积变形并改善物理散射幅度的提取。由于改进策略仅基于运动学,因此可以在不详细了解系统的情况下应用它。
时序非相关器 (OTOC) 可用于探测当动态初始条件发生变化时量子系统对信息的扰乱速度。在足够大的量子系统中,可以从 OTOC 中提取 Lyapunov 系数的量子类似物,该系数描述了经典混沌系统扰乱的时间尺度。OTOC 仅应用于非常有限数量的玩具模型,例如与黑洞信息扰乱相关的 Sachdev-Ye-Kitaev 模型,但它们可以发现在量子系统中的信息扰乱的更广泛的适用性,可以与实验进行比较。众所周知,多原子分子的振动会从低能量下的规则动力学转变为足够高能量下的容易的能量流。因此,分子代表了研究中等大小(此处为 6 到 36 个自由度)多体系统中扰乱的理想量子系统。通过计算量子 OTOC 及其经典对应物,我们可以量化信息在分子系统中如何以量子力学方式“扰乱”。在早期“弹道”动力学和探索全态密度时 OTOC 的后期“饱和”之间,确实存在一个可以为本研究中的所有分子定义量子 Lyapunov 系数的机制。与实验速率数据的比较表明,由 OTOC 测量的慢速扰乱可以达到分子反应动力学的时间尺度。即使对于我们讨论的最小分子,Maldacena 边界仍然由正则化的 OTOC 满足,但不由非正则化的 OTOC 满足,这强调了前者对于讨论这种中等尺寸量子系统中的信息扰乱更有用。
量子信息的离域化或扰乱已成为理解孤立量子多体系统中热化的核心要素。最近,通过将不可积系统建模为周期驱动系统,缺乏汉密尔顿图像,而真实的汉密尔顿动力学由于计算限制通常限于小系统规模,在分析上取得了重大进展。在本文中,我们从信息论的角度研究守恒定律(包括能量守恒定律)在热化过程中的作用来解决这个问题。对于一般的不可积模型,我们使用平衡近似来表明,即使系统节省能量,最大量的信息在后期也会被扰乱(以时间演化算子的三部分互信息来衡量)。相反,我们阐明了当系统具有导致光谱退化的额外对称性时,扰乱的信息量必须减少。这一普遍理论在全息共形场论 (CFT) 和 Sachdev-Ye-Kitaev (SYK) 模型的案例研究中得到了体现。由于 1 + 1D CFT 中具有较大的 Virasoro 对称性,我们认为,在某种意义上,这些全息理论并不是最大程度混沌的,这可以通过第二个 Rényi 三分互信息的不饱和明确看出。在 SYK 模型中,粒子空穴和 U ( 1 ) 对称性的作用较弱,因为简并只有两重,我们在大 N 和小 N 时都明确证实了这一点。我们根据局部算子的增长重新解释了算子纠缠,将我们的结果与非时间序相关器所描述的信息扰乱联系起来,从海森堡的角度确定了抑制扰乱的机制。
量子信息的离域化或扰乱已成为理解孤立量子多体系统中热化的核心要素。最近,通过将不可积系统建模为周期驱动系统,缺乏汉密尔顿图像,而真实的汉密尔顿动力学由于计算限制通常仅限于小系统规模,在分析上取得了重大进展。在本文中,我们从信息论的角度研究守恒定律(包括能量守恒定律)在热化过程中的作用来解决这个问题。对于一般的不可积模型,我们使用平衡近似来表明,即使系统节省能量,最大量的信息在后期也会被扰乱(以时间演化算子的三部分互信息来衡量)。相反,我们阐明了当系统具有导致光谱退化的额外对称性时,扰乱的信息量必须减少。这一普遍理论在全息共形场论 (CFT) 和 Sachdev-Ye-Kitaev (SYK) 模型的案例研究中得到了体现。由于 1 + 1D CFT 中具有较大的 Virasoro 对称性,我们认为,在某种意义上,这些全息理论并不是最大程度混沌的,这可以通过第二个 Rényi 三分互信息的不饱和明确看出。在 SYK 模型中,粒子空穴和 U ( 1 ) 对称性的作用较弱,因为简并只有两重,我们在大 N 和小 N 时都明确证实了这一点。我们根据局部算子的增长重新解释了算子纠缠,将我们的结果与非时间序相关器所描述的信息扰乱联系起来,从海森堡的角度确定了抑制扰乱的机制。