基于这些特性,金属和金属合金被用作承重植入物。其中,钴铬合金、不锈钢、钛和钛合金被广泛用于多种生物医学应用。特别是,钛及其合金的弹性模量接近骨骼,密度低于钴铬合金和不锈钢。[2,3] 此外,与纯钛相比,钛合金具有更高的机械性能,使其特别适合用作骨科和创伤植入物。然而,钛和钛合金被认为是生物惰性材料,即它们不会与人体周围组织发生化学或生物反应。[4] 此外,涉及钛合金(即 Ti6Al4V 合金)的腐蚀现象会导致释放对人体有害的 Al 和 V 合金。为了促进植入物与现有人体骨组织的骨整合,从而优化装置的整合,在植入物表面生长涂层可能是一种合适的方法。尤其对于钛和钛合金,火花阳极氧化是一种合适的技术,可在基体上生长出牢固粘附的多孔陶瓷涂层,最大限度地减少可能导致骨溶解的剥落现象。在此背景下,已研究了多种策略来增强钛合金的生物活性,从而增强其骨整合。[5–7] 文献中有充分的证据表明,羟基磷灰石 (HA,Ca 10 (PO 4 ) 6 (OH) 2 ) 的存在可以增强外来生物材料的骨整合,因为它与硬组织和软组织具有很高的生物相容性。[8] 因此,诱导 HA 的结合或生长已被证明是提高材料生物活性的一种好策略。例如,这可以通过电化学转化涂层工艺(如火花阳极氧化)通过精确调整操作条件(形成电压、电解质浴成分等)来实现。 [3,9,10] 此外,Ti6Al4V 合金表面生长一层厚的阳极氧化层可以提高其耐腐蚀性能
在这项研究中,研究了低能(1 keV)AR +离子束照射对多晶Ti磁盘形态的影响。通过切割和机械抛光商业棒来制备目标。通过扫描电子显微镜(SEM)和机械辅助学来表征辐照前后的表面地形。使用各种入射角(αI)以10 18离子/cm 2的总剂量从正常到放牧的几何形状进行辐射。对辐照的Ti靶标的SEM分析揭示了明显的纹理,其表面形态具有各种可实现的表面形态,具体取决于αI。表面特征从具有指纹样图案(0≤αi≤60°)的斑块中的波纹变化到平行于离子束方向的定向结构,例如柱/尖端结构(65≤αi≤75°)和浅层波纹(αi至80°)。这种形态的选择性可以归因于竞争性扩散和侵蚀性方案,在这种情况下,形态的横向均匀性受到晶体晶粒尺寸有限的影响。最后,评估了特征性地形的润湿性和生物兼容性,与未经处理的表面相比,结果表明离子束纹理表面的性能提高了。
在“联合公民诉联邦选举委员会”案中,最高法院授予公司与人类基本相同的政治言论权。但是,人工智能(“AI”)在指导政治传播内容和传播方面的日益普及是否会对这种承诺的法理合理性提出质疑?如果人工智能实体可以在没有任何人类监督的情况下完全拥有和运营商业实体,那么继续将公司解释为宪法权利的承担者是否有意义?这些问题似乎尤为重要,因为在人工智能的新时代,现代公司的性质和实践正在迅速演变。这种演变的规模无疑将影响我们共同的社会、经济和政治生活中一些最重要的方面。在人工智能时代,我们对公司的概念发生了根本性变化的程度,评估先前关于公司权利的法理承诺的持久合理性似乎至关重要,因为这些承诺似乎不再与维护我们的民主价值观相兼容。人工智能时代企业实践的急剧演变,为我们重新审视赋予企业完全宪法人格和强大政治言论权的法理敏感性提供了号召。因为如果企业可以利用人工智能数据挖掘和预测分析来操纵政治偏好和选举结果以获取更多利润,那么我们民主进程的基本可行性和合法性就悬而未决。此外,如果人工智能技术本身在确定企业政治传播内容方面发挥着越来越重要的作用,即使不是控制性作用,那么赋予企业与人类相同的政治言论权实际上就是将政治领域拱手让给了算法实体。最后,尽管人工智能可以帮助企业采取更人性化的行为,但企业受到非人类实体严重影响或控制这一概念本身就需要至少在一定程度上限制对企业作为完全宪法权利持有者的承诺。特别是,在企业政治活动方面,人工智能在管理(可能还有所有权)方面的日益普及
这是以下研究文章的同行评审,被接受的作者手稿:O'Connor,S.,Dennany,L。,&O'Reilly,E。(2023)。纳米材料电化学发光透明度的进化向生物相容性材料。生物电化学,149,[108286]。https://doi.org/10.1016/j.bioelechem.2022.108286
摘要:压电效应在生物系统中被广泛观察到,其在生物医学领域的应用也正在兴起。可穿戴和可植入生物医学设备的最新进展为压电材料构件带来了希望,也提出了要求。由于其生物相容性、生物安全性和环境可持续性,天然压电生物材料被认为是这一新兴领域的有前途的候选材料,有可能取代传统的压电陶瓷和合成聚合物。在此,我们全面回顾了五种主要类型的压电生物材料(包括氨基酸、肽、蛋白质、病毒和多糖)的最新研究进展。我们的讨论重点是它们与结构和相相关的压电性能以及实现所需压电相的制造策略。我们比较和分析了它们的压电性能,并进一步介绍和评论了改善其压电性能的方法。我们还讨论了这组功能生物材料的代表性生物医学应用,包括能量收集、传感和组织工程。我们设想,从分子水平上理解压电效应、压电响应改进和大规模制造是这一有前途的跨学科领域的三大挑战,也是研发机会。关键词:压电、天然生物材料、可持续材料、生物医学设备、纳米发电机、灵活性、氨基酸、蛋白质、多糖
在体内使用的位置决定了材料所处的化学环境,进而影响材料性能要求。例如,在直接接触血液时,人体的免疫反应(通过白细胞)会在材料表面形成严酷的氧化环境,因为白细胞会试图吞噬(消耗)外来物质。因此,长期直接接触血液的设备通常需要具有出色抗氧化性的材料。相反,与皮肤接触的设备可能不会经历与血液接触时相同水平的氧化压力,因此具有抗水解(水降解)的材料可能适合制造。此外,与极端 pH 环境(例如胃系统)接触的医疗设备需要能够在化学严酷环境下工作的材料。
本文所含信息被认为是可靠的,但对其准确性、特定应用的适用性或将获得的结果不作任何形式的陈述、保证或担保。这些信息通常基于使用小型设备的实验室工作,并不一定表明最终产品的性能或可重复性。所介绍的配方可能未经稳定性测试,应仅用作建议的起点。由于商业上用于处理这些材料的方法、条件和设备各不相同,因此不保证或担保产品是否适用于所披露的应用。全面测试和最终产品性能是用户的责任。对于超出 Lubrizol Advanced Materials, Inc. 直接控制范围的任何材料的使用或处理,Lubrizol Advanced Materials, Inc. 不承担任何责任,客户承担所有风险和责任。卖方不作任何明示或暗示的保证,包括但不限于适销性和特定用途适用性的暗示保证。本文所含内容不应被视为未经专利所有者许可而实施任何专利发明的许可、建议或诱因。Lubrizol Advanced Materials, Inc. 是 Lubrizol Corporation 的全资子公司。
纳米机器人体现了思维系统与纳米尺度具体化的纠缠、复杂和偶然的融合 1 。它们将前几章讨论过的更广泛的人工智能、仿生机器人和纳米技术领域的炒作、希望和不满融入到一个单一的人工制品中,并肩负着彻底改变生物医学和医疗保健的单一总体承诺。通过自主前往难以进入的体内部位,纳米机器人有望对药物进行成像和输送、消灭癌细胞,甚至进行手术切口。这就是 1966 年好莱坞大片《神奇旅程》中预见性地拍摄的纳米机器人的前景,近四十年后,2002 年迈克尔·克莱顿的惊悚片《猎物》将其妖魔化。然而,纳米机器人既不是《神奇旅程》中的乌托邦,外科医生可以缩小到微观尺度,乘坐微型潜艇穿越人体血液,也不是克莱顿笔下寄生纳米机器人群以人类为食的反乌托邦。事实上,一个改良版的乌托邦是可以实现的,即自主纳米机器人(而不是缩小的人类)提供有针对性的治疗,或者至少这是过去三十年来全球为实现这一目标而投入数百万美元的希望(WIPO,2015 年)。同时,人们普遍认为,如果不对人类、生物和数字的这种融合所带来的前所未有的风险进行明确的考虑、描述和缓解,这一承诺就不可能实现。因此,除了纳米机器人对生物医学和医疗保健的前景的炒作和希望之外,我们在此探讨的问题是,将这些人工制品常规化到临床实践中需要什么?
0.89 和 δ D = 0.76。发现平均写入噪声为 σ write = 1.97%。b,在一系列 100 个连续脉冲(每个突触前脉冲为 10 µA,100 毫秒)后,设备电导率逐步增加。插图显示了 20 个状态的状态密度分布,这些状态不重叠,表明写入噪声极低