摘要 — 本文旨在研究由与波导耦合的腔量子电动力学 (cavity-QED) 系统的相干反馈控制引起的双光子动力学。在该装置中,腔中的二能级系统可以作为光子源,发射到波导中的光子可以在波导中传输和反射后多次与腔 QED 系统重新相互作用,在此过程中反馈可以调节进出腔的光子数量。我们在两种情况下分析了该相干反馈网络中双光子过程的动力学:波导和腔之间的连续模式耦合方案和离散周期模式耦合方案。这些耦合方案的不同之处在于它们的相对尺度和用于耦合的半透明镜的数量。具体而言,在连续模式耦合方案中,双光子态的产生受波导反馈回路长度以及波导与腔-QED系统之间的耦合强度的影响。通过调整波导长度和耦合强度,我们能够有效地产生双光子态。在离散周期模式耦合方案中,腔中的Rabi振荡可以稳定,并且波导中没有明显的双光子态。
摘要:退相干是一种基本现象,当纠缠量子态与其环境相互作用时,会导致波函数坍缩。退相干的必然性提供了量子计算最内在的限制之一。然而,对导致退相干的环境化学运动的研究很少。在这里,我们使用量子分子动力学模拟来探索液态氩中 Na 2 + 的光解离,其中溶剂波动会引起退相干,从而决定化学键断裂的产物。我们使用机器学习将溶质-溶剂环境表征为高维特征空间,使我们能够预测键合电子何时以及在哪个光碎片上定位。我们发现,达到必要的光碎片分离并经历异相溶剂碰撞是化学键断裂过程中退相干的基础。我们的工作强调了机器学习在解释复杂溶液相化学过程方面的实用性,并确定了退相干的分子基础。
日本福冈——在《Science Advances》杂志上发表的一项研究中,九州大学工程学院副教授柳井伸宏领导的一组研究人员与九州大学宫田清副教授和神户大学小堀康弘教授合作,报告称他们已经在室温下实现了量子相干性:量子系统能够随着时间的推移保持明确状态而不受周围干扰影响的能力。这一突破是通过将发色团(一种吸收光并发射颜色的染料分子)嵌入金属有机骨架(MOF,一种由金属离子和有机配体组成的纳米多孔晶体材料)中实现的。他们的发现标志着量子计算和传感技术的重大进步。虽然量子计算被定位为计算技术的下一个重大进步,但量子传感是一种利用量子比特(经典计算中比特的量子类似物,可以存在于 0 和 1 的叠加中)量子力学特性的传感技术。可以采用各种系统来实现量子比特,其中一种方法是利用电子的固有自旋(与粒子磁矩相关的量子特性)。电子有两种自旋状态:自旋向上和自旋向下。基于自旋的量子比特可以存在于这些状态的组合中,并且可以“纠缠”,从而允许从另一个量子比特推断出一个量子比特的状态。通过利用量子纠缠态对环境噪声极其敏感的特性,量子传感技术有望实现比传统技术更高的分辨率和灵敏度的传感。然而,到目前为止,将四个电子纠缠并使其对外部分子作出反应,即使用纳米多孔 MOF 实现量子传感一直具有挑战性。值得注意的是,发色团可用于在室温下通过称为单重态裂变的过程激发具有所需电子自旋的电子。然而,在室温下会导致存储在量子比特中的量子信息失去量子叠加和纠缠。因此,通常只有在液氮水平温度下才能实现量子相干性。为了抑制分子运动并实现室温量子相干性,研究人员在 UiO 型 MOF 中引入了基于并五苯(由五个线性稠合苯环组成的多环芳烃)的发色团。“这项研究中的 MOF 是一种独特的系统,可以密集地积累发色团。此外,晶体内的纳米孔使发色团能够旋转,但角度非常受限,”Yanai 说道。
每周1.5至1.9次。 就这个数字而言,约314亿至398亿塑料交付容器每周1.5至1.9次。就这个数字而言,约314亿至398亿塑料交付容器
量子状态的相干叠加是量子信息处理的重要资源,它将量子动力学和信息与经典对应物区分开。在本文中,我们确定了在宽泛的环境中传达量子信息的相干要求,包括受监视的Quanth Quanth动力学和量子误差校正代码。我们通过考虑由两个对手Alice和Eve之间玩过的量子信息游戏生成的混合电路来确定这些要求,Alice和Eve之间通过对固定数量的量子台进行应用和调查来竞争。Alice应用单位人员试图维持量子通道的容量,而EVE则应用测量方法来摧毁它。通过限制每个对立面可用的连贯性生成或破坏操作,我们确定了爱丽丝的连贯要求。当爱丽丝扮演旨在模仿通用监测量子动态的随机策略时,我们会发现纠缠和量子通道容量中的相干相变。然后,我们得出一个定理,给出了爱丽丝在任何成功策略中要求的最小相干性,并通过证明连贯性在任何stabelizer量子误差校正代码中的代码距离上设置了上限。这样的界限提供了对量子通信和误差校正的相干资源要求的严格量化。
摘要 目的 基于光学相干断层扫描 (OCT) 图像,开发一种 Vision Transformer 模型来检测糖尿病性黄斑病变 (DM) 的不同分期。方法 删除质量较差的图像后,从武汉大学人民医院眼科中心提取共 3319 张 OCT 图像,并按 7:3 的比例随机分成训练集和验证集。所有黄斑横断面扫描 OCT 图像均回顾性收集自 2016 年至 2022 年 DM 患者眼部。在收集的图像上分别标记 DM 的 OCT 分期,包括早期糖尿病性黄斑水肿 (DME)、晚期 DME、重度 DME 和萎缩性黄斑病变。训练基于 Vision Transformer 的深度学习 (DL) 模型来检测 DM 的四个 OCT 分级。结果 我们提出的模型可以提供令人印象深刻的检测性能。我们实现了 82.00% 的准确率、83.11% 的 F1 分数、0.96 的受试者工作特征曲线下面积 (AUC)。对早期DME、晚期DME、重度DME、萎缩性黄斑病变四种OCT分级检测的AUC分别为0.96、0.95、0.87、0.98,准确度分别为90.87%、89.96%、94.42%、95.13%,精密度分别为88.46%、80.31%、89.42%、87.74%,敏感度分别为87.03%、88.18%、63.39%、89.42%,特异度分别为93.02%、90.72%、98.40%、96.66%,F1评分分别为87.74%、84.06%、88.18%、88.57%。结论 我们基于 Vision Transformer 的 DL 模型在检测糖尿病的 OCT 分级方面表现出相对较高的准确率,这可以帮助患者进行初步筛查,以识别病情严重的人群。这些患者需要进一步检查以准确诊断,并及时治疗以获得良好的视力预后。这些结果强调了人工智能在未来协助临床医生制定糖尿病治疗策略方面的潜力。
高维状态的量子叠加可以提高加密协议的计算速度和安全性。然而,层析成像过程的指数级复杂性使得这些属性的认证成为一项具有挑战性的任务。在这项工作中,我们使用由飞秒激光写入技术制造的六模通用光子处理器实现的成对重叠测量,通过实验认证了针对不断增加的维度的量子系统的相干性见证。特别是,我们展示了所提出的相干性和维度见证对于维度高达 5 的量子位的有效性。我们还展示了在量子询问任务中的优势,并表明它是由量子语境性推动的。我们的实验结果证明了这种方法对于可编程集成光子平台中量子属性认证的有效性。
量子物理学的一个基本概念,维格纳-亚纳斯信息,在这里被用作与生物磁感应有关的自旋相关自由基对反应中量子相干性的量度。该量度与反应产量的不确定性有关,并且与用于生物化学传递磁场变化的细胞受体-配体系统的统计数据有关。可测量的生理量,例如受体数量和配体浓度的波动,被证明反映了引入的单重态-三重态相干性的维格纳-亚纳斯量度。得出了将生物资源和生物性能系数的乘积与维格纳-亚纳斯相干性联系起来的量子生物不确定性关系。这种方法可以作为在细胞环境中对量子相干效应的一般搜索。
量子相干性是量子力学中的一个基本概念,代表了将量子力学与经典物理学区分开的最基本特征之一。量子相干性是多粒子干扰和量子纠缠的基础。它也是量子光学,量子信息等各种物理现象的重要成分。近年来,通过基于资源理论框架的量子相干测量方案的提议,已广泛研究了量子相干性作为量子资源。本文回顾了量子相干性的资源理论,并介绍了量子相干性在量子计算,量子信息和跨学科领域的重要应用,尤其是在量子热力学和量子生物学中。量子相干性及其应用仍在探索和开发。我们希望这篇评论可以为相关研究提供灵感。
摘要 — 通过比较穿过传感臂和参考臂的光信号,干涉光子传感器使用简单的单波长激光源实现了显著的灵敏度和检测限。原则上,通过比较穿过单个传感波导的两种模式的传播,基于双模波导的传感器可以在不需要参考臂的情况下提供相同的优势。然而,双模传感器的典型实现面临两个挑战:(i) 传感器输入和输出处的突变模式激发和重组效率低下、功率不平衡且产生可能掩盖小传感信号的杂散反射,(ii) 输出信号的正弦性质可能导致读出模糊。这里我们提出了一种螺旋状双模折射率传感器,它具有全模式转换、多路复用和解复用以及相干相位检测,可提供具有紧凑而稳健布局的明确线性相位读出。我们的传感器设计为1550 nm 中心波长,在氮化硅平台上制造,并通过体传感实验验证,检测限达到 1. 67 · 10 −7 RIU。