摘要:近年来,基于深度学习的方法已被应用于合成孔径雷达(SAR)图像的目标检测。然而,由于SAR的成像机制和低信杂噪比(SCNR),利用SAR图像进行飞机检测仍然是一项具有挑战性的任务。针对这一问题,提出了一种基于相干散射增强和融合注意机制的低SCNR SAR图像飞机检测新方法。考虑到人造目标与自然背景之间的散射特性差异,引入相干散射增强技术来增强飞机散射信息并抑制杂波和斑点噪声。这有利于深度神经网络后续提取有关飞机的准确和有判别力的语义信息的能力。此外,开发了一种改进的Faster R-CNN,该网络具有一种融合局部和上下文注意的新型金字塔网络。局部注意通过增强重要对象的可区分特征来自适应地突出显示重要对象,而上下文注意则有助于网络提取图像的不同上下文信息。融合局部注意力和上下文注意力可以保证飞机被尽可能完整地检测到。在TerraSAR-X SAR数据集上进行了广泛的实验以与基准进行比较。实验结果表明,所提出的飞机检测方法在低SCNR下可以达到高达91.7%的平均精度,显示出有效性和优于许多基准。
广泛认为,大脑中聚集的 β 淀粉样蛋白 (β A) 斑块与多种神经退行性疾病有关,而它们的识别有助于阿尔茨海默病的早期诊断。我们研究了使用带有硅条光子计数探测器的光谱 X 射线相干散射系统识别大脑 β A 蛋白斑块的可行性。这种方法基于大脑中淀粉样蛋白、白质和灰质的结构差异。我们模拟了一个能量和角度色散 X 射线衍射系统,该系统带有 X 射线笔形束和硅条传感器、能量分辨探测器。多色光束在几何上聚焦于大脑中感兴趣的区域。首先,修改了用于蒙特卡罗传输的开源 MC-GPU 代码以适应探测器模型。其次,模拟了有和没有 β A 的大脑模型,以评估该方法并确定获得可接受统计功效所需的辐射剂量。对于 15 厘米脑模型中 3、4 和 5 毫米大小的 β A 靶,所需的入射曝光量约为 0.44 mR,来自 60 kVp 钨光谱和 3.5 毫米的附加铝过滤。结果表明,所提出的 X 射线相干散射技术能够使用高能 X 射线光谱,因此有可能在可接受的辐射剂量水平内用于精确的体内检测和量化脑中的 β A。
To determine the thickness of the Sr 2 RuO 4 /NdGaO 3 (110) film, we used a lab-based x-ray diffractometer (Rigaku) and Cu-K α radiation to measure x-ray diffraction (XRD) data at room temperature along the specular crystal trun- cation rod of the Sr 2 RuO 4 thin film/NdGaO 3 substrate, as shown in图s2(a)。从纤维晶体中具有有限尺寸的相干散射,沿平面外方向产生特征性的干扰条纹,即在围绕每个原发性纤维峰的固定强度中,即sec- ondary maxima和minima。这些条纹之间的间距与Crystallites中的层总数成反比;同时,每个结晶石中层之间的平均平面间间距C/ 2确定每个主要纤维峰沿 div>中心的何处
原子质波的干涉法是基础科学1-5的必不可少的工具,对于应用的量子传感器6-10。干涉仪尺度的敏感性随衍射物质波的动量分离而导致大动量传递束分裂器的发展11,12。然而,尽管进行了数十年的研究,但对于动量转移13,由于第一个原子衍射实验以来使用的结晶光栅仍然是无与伦比的。到目前为止,仅报道了亚原子颗粒的衍射,但从未针对原子。在这里,我们通过在正常入射率下通过单层石墨烯证明了氦气和氢原子在基尔洛克素伏元能的衍射,以回答这一百年历史的挑战。尽管原子的高动能和与石墨烯电子系统耦合,但我们观察到衍射模式具有多达八个相互晶格向量的相干散射。衍射是可能的,从而限制了动量转移到光栅上。我们的演示是Thomson和Reid 14,15的第一次传输实验的原子对方,从而解开了原子衍射中的新电位。我们希望我们的发现能够激发未知能源制度中的破坏性研究以及新的基于物质波的传感器的发展。
与物质的X射线相互作用是医学成像成功,影响图像质量,诊断准确性和患者安全的基础。这项研究批判性地探讨了主要的相互作用机制 - 光电吸收,康普顿散射和相干散射,以及它们在各种医学成像方式中的影响。通过分析其对图像分辨率,对比度和辐射剂量的影响,该研究突出了每种相互作用机制的优势和局限性。这些发现强调了光电吸收在高对比度成像中的作用,康普顿散射在减少噪声中带来的挑战以及相干散射的最小临床意义。重点是优化成像参数,并采用高级技术,例如双能CT和AI增强成像,以平衡诊断功效与辐射安全性。此探索为X射线物理和医学成像的相互作用提供了宝贵的见解,为增强诊断实践和未来创新铺平了道路。
摘要:激光导向能量沉积(L-DED)的金属添加剂制造(AM)通常会导致沿构建方向形成纹理柱状晶粒,从而导致各向异性机械性能。这可能会对产品的预期应用产生负面影响。各向异性可以通过在L-DED过程中通过对超声(US辅助)的额外暴露来修改材料来消除各向异性。在本文中,由AISI H13(TLS Technik,Bitterfeld-Wolfen,Germany)工具钢制造了多轨样品,该工具是使用特殊设计的冷却系统的US辅助(28 kHz)L-DED工艺制造的。该研究还包括后处理后的退火和淬火,并通过对修饰钢进行回火热处理,从而导致性质保留,这是由硬度测量结果证实的。XRD分析用于测量晶胞的结构参数,并在两个方向上测量硬度特性:纵向和平行于沉积方向。发现,美国辅助L-DED使我们能够在两个印刷方向上获得具有相等大小的相干散射区域大小的各向同性结构,并减少材料中的残留应力。硬度的各向异性显着降低,在XY和XZ平面之间发现了636和640 HV。基于获得的硬度数据,应注意的是,此处研究的某些热处理也可能导致该性质各向异性的降低,类似于美国辅助效应。
结构性蓝色在动物中很常见,组织纳米结构和物质系统产生它们(尤其是明亮的蓝色),通常基于高度有序的纳米架构。在这项研究中,我们描述了液体尾丁略皮肤的异常明亮,无关紧要的结构蓝色,这是由更无序的散射元素带来的,这些散射元素具有先前未描述的核心 - 壳超微结构,其中涉及nano-seclets封闭圭鸟氨酸纳米纳米弹丸。我们表明,这种皮肤结构充当细胞内光子玻璃,相干散射蓝色,而密切相关的黑素化器的宽带吸收则消除了光子玻璃的典型低色饱和度。我们对黄貂鱼中皮肤超微结构和颜色的表征展示了如何利用无序系统来产生鲜艳的色调,同时说明基于鸟嘌呤的颜色的能力可能在脊椎动物的演化中很早就出现。此外,采用两种不同的光子现象的材料结构功能协会的材料结构功能关联,说明了纳米级体系结构的演变如何在更大尺寸的尺度上具有深远的影响(例如,在视觉生态学和通信中),并为颜色效应的光效率覆盖了基本的指南。
“可持续移动自主和弹性 6G 卫星通信”项目获得 SSF 的 6000 万瑞典克朗资助,用于运营一个多学科研究中心。该中心是大学、研究机构和大量专业公司以及多个地区和当局合作的结果。项目主要负责人是 KTH 的 Cicek Cavdar。该中心的研究将由总共 21 个合作伙伴负责,分布在:大学:皇家理工学院 (KTH)、吕勒奥理工大学 (LTU),研究机构:RISE、瑞典空间物理研究所 (IRF) 公司:爱立信、萨博、Ovzon、Beyond Gravity、Forsway、Satcube、瑞典空间公司 (SSC)、NorthernWave、Primekey、Airforestry,当局、组织和地区:邮政和电信局 (PTS)、欧洲非相干散射科学协会 (EISCAT)、瑞典交通管理局、瑞典森林工业、北布滕地区、西布滕地区、斯德哥尔摩地区。该中心还得到了多家国际大学和公司的支持,包括 Eutelsat-OneWeb、空中客车、Viasat 和 Thales Alenia Space。这些合作伙伴来自整个价值链:监管机构、系统制造商、运营商和用户。
由于其优异的性能,先进陶瓷、金属和复合材料等硬质材料具有巨大的经济和社会价值,可应用于众多行业。了解它们的微观结构特征对于提高其性能、材料开发和释放其未来创新应用的潜力至关重要。然而,它们的微观结构显然是分层的,通常跨越几个长度尺度,从亚埃到微米,这对它们的表征提出了严峻的挑战,尤其是原位表征,这对于理解控制微观结构形成的动力学过程至关重要。本综述全面描述了快速发展的超小角度 X 射线散射 (USAXS) 技术,这是一种探测硬质材料纳米到微米级特征的无损方法。USAXS 及其补充技术在为硬质材料开发和应用时,可以提供有关其孔隙率、晶粒尺寸、相组成和不均匀性的宝贵见解。我们讨论了 USAXS 在硬质材料中的基本原理、仪器、优势、挑战和全球地位。通过选定的示例,我们展示了该技术在揭示硬质材料微观结构特征方面的潜力,以及它与先进材料开发和制造工艺优化的相关性。我们还提供了对 USAXS 持续发展的机遇和挑战的看法,包括多模态表征、相干散射、时间分辨研究、机器学习和自主实验。我们的目标是促进 USAXS 技术的进一步实施和探索,并激发它们在硬质材料科学的各个领域的更广泛应用,从而推动该领域的发现和进一步发展。