我们利用周期性驱动通量超导电路时出现的准能量结构,通过动态诱导的通量不敏感最佳点来编码量子信息。弗洛凯理论框架直观地描述了这些远离未驱动量子位半通量对称点的高相干工作点。如 [ Huang et al., 2020 ] 所示,这种方法可以灵活地选择通量偏置点和逻辑量子态的能量。我们表征了系统对调制幅度和直流通量偏置中噪声的响应,并通过实验证明了一个同时对两者的波动不敏感的最佳工作点。与相同偏置点下的静态操作相比,我们观察到在动态最佳点用拉姆齐型干涉法测得的量子比特相干时间提高了 40 倍。
我们预测在两种惰性气体元素凝聚相(固态氖和超流体氦)界面处将出现一种新的量子电子结构。注入该界面的过量电子将其波函数自限制在纳米圆顶结构中。其尺寸随压力而变化,光学跃迁覆盖宽广的中红外光谱。这些电子的集合可以形成经典的维格纳晶体,类似于三角晶格上的量子点阵列。在超快激光照射下,这种维格纳晶体可以在皮秒时间尺度上表现出超辐射的量子光学现象。超长的自旋相干时间和微米级确定性可配置性使该系统中的电子可以充当量子信息载体。它们的自旋状态可以由片上单电子器件控制和读出。
在单个芯片上与长相干时间和功能量子设备的整合,因此实现了全固体量子计算芯片,是当前对量子信息处理的实验研究的重要目标。在各种量子平台中,在光子量子芯片和超导量子芯片中已经取得了一系列显着的进展,而量子数的数量和量子电路的复杂性都在增加。尽管这两个芯片平台具有各自的独特优势和潜力,但它们的缺点已经逐渐揭示并需要解决。通过引入声子集成的设备,可以在同一芯片上组合所有无用的语音,光子和超导量子设备,以实现它们之间的相干耦合。在这里,我们提供了有关量子信息处理的综合光子,超导和混合量子芯片的前景和简短审查。
超导量子器件具有出色的连接性和可控性,而半导体自旋量子位则以其持久的量子相干性、快速控制以及小型化和微缩潜力而脱颖而出。近几年来,在将超导电路和半导体器件结合成混合量子系统方面取得了显著进展,该系统受益于两种成分的物理特性。超导腔可以介导电子自由度(例如半导体芯片上单个电子的自旋)之间长距离的量子相干耦合,从而为量子器件提供必要的连接性。半导体量子点中的电子自旋已经达到了非常长的相干时间,并允许快速量子门操作并提高保真度。我们总结了描述超导-半导体混合量子系统的最新进展和理论模型,解释了这些系统的局限性,并描述了未来实验和理论的不同发展方向。
摘要:充当潜在量子门的分子多自旋系统需要微调磁相互作用以实现单自旋可寻址性和自旋量子比特的纠缠。我们在此报告一种新的单链钒基-卟啉二聚体的合成,该二聚体结晶为两种不同的伪多晶型。单晶连续波电子顺磁共振研究表明,两个倾斜且可区分的自旋中心之间存在微小但至关重要的各向同性交换相互作用 J ,其数量级为 10 -2 cm -1 。实验和 DFT 研究表明 J 值与卟啉平面倾斜角和扭曲度之间存在相关性。脉冲 EPR 分析表明,两个钒基二聚体保持了单体的相干时间。我们的结果,加上卟啉系统的蒸发性,表明这类二聚体在量子信息处理应用中极具前景。
我们详细介绍了最近在 [VV Kuzmin et. al. , npj Quantum Information 5, 115 (2019)] 中设计的用于半解析描述大规模量子中继器网络的图解技术。该技术考虑了所有基本的实验缺陷,包括网络量子存储器的连续耗散刘维尔动力学和经典通信延迟。使用半解析方法获得的结果与精确的蒙特卡洛模拟相符,而所需的计算资源仅与网络规模成线性关系,因此可以对受到相关现实缺陷影响的大规模量子网络进行精确的比较和优化。我们通过针对一系列网络规模和存储器相干时间优化 1D 和 2D 量子网络中的密钥速率来说明该方法的潜力。所提出的方法为未来量子网络的开发和有效优化开辟了新的可能性。
由于超导电路的量子相干时间已从纳秒秒增加到数百微秒,因此目前是量子信息处理的领先平台之一。但是,连贯性需要通过磁性命中率进一步改进,以减少当前误差校正方案的高度硬件开销。达到此目标的呈铰链,以降低破碎的库珀对的密度,所谓的准颗粒。在这里,我们表明环境放射性是非quilibrium准粒子的重要来源。此外,电离辐射在同一芯片上引入了谐振器中时间相关的准粒子突发,从而进一步使量子误差校正复杂化。在深层铅屏蔽的低温恒温器中运行,将准粒子的爆发速率降低了三十个,并将耗散降低到一个因子四,从而显示了减排在将来的固态量子硬件中减少辐射的重要性。
量子物理和化学问题。 [1] 为此,世界各地的研究人员正致力于开发量子计算、量子模拟和量子传感。 [2] 这项技术的优势可能有助于解决一些影响深远的问题,如理解高温超导性、进一步实现处理器中晶体管的小型化以及预测新型药物的特性。 [3–5] 量子应用的基本单位是量子比特,一般来说,量子比特是一个具有两个或多个能级的系统,可以在一段有限的时间内进入相干叠加态,这段时间称为相干时间。 [6] 目前正在研究几种作为量子比特的系统,将它们的属性与特定的应用联系起来:用于量子通信的光子,[7] 用于量子计算的超导电路,[8,9] 和用于磁场量子传感的金刚石中的氮空位。 [10,11] 其他有趣的平台包括硅中的磷杂质、[12] 量子点、[13] 里德堡原子 [14] 和捕获离子。[15,16] 所有这些潜在的量子比特平台在作为独立单元工作时都表现出非凡的特性。然而,实现量子门需要将几个这样的单元耦合起来,而这具有挑战性。同样,由于缺乏能够在阵列中精确定位量子比特的制造工艺,它们的可扩展性也受到限制。[17] 必须满足这两个要求才能实现工作的量子装置,因此这是一项不简单的任务。分子自旋量子比特 (MSQ) 是一个很有前途的平台,可以应对这些挑战。[18–23] 分子是微观的量子物体,像原子一样,但其组成更灵活,具有在纳米级形成有序结构的巨大潜力。 [24,25] 由于其合成的多功能性,可以微调多个量子比特之间的相互作用 [26–28] 并修改配体壳以满足特定的实际需求,例如将量子比特转移到固体基底上或设备中。[4,29–32] 人们对 MSQ 的兴趣迅速增长,并在短时间内取得了有关化学设计与量子特性之间关系理解的显著成果。[33–41] 现在很明显,可以实现长的相干时间 [42–45] 并且可以设计多自旋能级系统,这要归功于量子门
我们报告了一种光晶格钟,其总系统不确定度为 8.1×10-19(以分数频率单位表示),是迄今为止所有时钟中最低的不确定度。该时钟依赖于询问垂直取向的浅一维光晶格中捕获的稀疏费米子锶原子集合中的超窄 1 S 0 → 3 P 0 跃迁。利用成像光谱,我们之前展示了创纪录的原子相干时间和测量精度,这是通过精确控制碰撞位移和晶格光位移实现的。在这项工作中,我们通过评估 5 s 4 d 3 D 1 寿命来修改黑体辐射位移校正,这需要精确表征和控制 5 s 4 d 3 D 1 衰变中的多体效应。最后,我们测量了磁敏感度最低的时钟跃迁上的二阶塞曼系数。所有其他系统效应的不确定性均低于 1 × 10 − 19。
我们在使用定制的互补金属 - 氧化物 - 氧化流程过程制造的绝缘子纳米线上,在硅中报告了双极栅极绘制的量子点。双极性是通过将栅极延伸到固有的硅通道上的高度掺杂的N型和P型末端来实现的。我们利用能够向硅通道提供双极载体储层的能力,以证明使用相同的电极来重新定义,并用相同的电极,带有孔或电子的双量子点。我们使用基于栅极的反射测量法来感知电子和孔双量子点的点间电荷过渡(IDT),从而实现了电子(孔)的最小整合时间为160(100)L s。我们的结果提供了将电子旋转与硅中电孔旋转的长相干时间相结合的机会。