SPEQTEM(光谱量子透射电子显微镜)是一种先进的显微镜,配备单色仪、能量过滤器和电子束整形及量子控制附件。除了能够对材料进行原子分辨率成像外,它还有助于研究相干激发和内部电磁场。该显微镜由 IE entrance、NQSTI、Smart Electron 和 Impress 项目资助购置。它的目标是成为光谱和量子显微镜的领先中心。
光与物质之间的相互作用允许实现量子固体中平衡状态不平衡状态。特别是,非线性语音是在非平衡中实现固定电子状态的最有效方法之一。在此,通过扩展的从头算分子动力学方法,我们确定长期持久的光驱动的准几何形状可以稳定HGTE化合物材料家族的拓扑性质。我们表明,红外活性声子模式的相干激发会导致原子几何形状的变形,其寿命为几个picseconds。我们表明,在这种非平衡几何形状中,四个Weyl点恰好位于费米水平,使其成为理想的长寿命稳定的Weyl半学。我们建议,可以通过Fermi Arc表面状态的光电子光谱或非线性霍尔效应的超快泵送传输测量值来识别这种亚稳态的拓扑相。
摘要 具有里德堡介导相互作用的单个原子组装阵列为多体自旋哈密顿量的模拟以及基于通用门的量子信息处理的实现提供了强大的平台。我们展示了在微透镜产生的可重构几何多点陷阱阵列中首次实现里德堡激发和受控相互作用。我们利用原子逐个组装来确定性地制备预定义的铷里德堡原子二维结构,这些结构具有精确已知的相互分离和可选择的相互作用强度。通过调整几何形状和所讨论的里德堡状态,可以访问从弱相互作用到强耦合的参数范围。我们表征了 57D 5 / 2 状态下非相互作用原子簇的同时相干激发,并分析了实验参数和局限性。对于利用 87D 5 / 2 状态优化的里德堡阻塞配置,我们观察到集体增强的拉比振荡。
孤子是局部非线性波,可以像粒子一样传播和相互作用。理论研究表明,水波、光纤中的光脉冲、超导设备中的磁通量子和生物分子的相干激发等现象都可以是孤子。计算机模拟表明,在存在摩擦损耗机制、外部驱动力和热涨落等现实特征的情况下,可以形成孤子。孤子在这些情况下将存在足够长的时间,以至于成为波激发时间演化的重要特征。但孤子动力学的实验演示仍然很少。因此,最值得注意的是,Fujimaki, Nakajima 和 Sawada 1 以及 Wu, Wheatley, Putterman 和 Rudnick 2 最近发表的两篇展示真实系统中孤子的论文。Fujimaki 等人的工作。处理电子约瑟夫森传输线 (JTL) 上的孤子碰撞,该传输线长 1.8 毫米,由一系列 31 个离散约瑟夫森结(交错的超导层和绝缘层)组成。在 JTL 的连续版本中,约瑟夫森效应(超导电子穿过绝缘层)是由超导薄膜对之间的弱耦合引起的。这种重叠几何形状由粒子物理学家最初开发的正弦-戈登方程非常精确地建模。1962 年,Perring 和 Skyrme 证明这个非线性偏微分方程具有他们称之为“扭结”和“反扭结”的解,之后
*gdliu@xtu.edu.cn 摘要:偏振光在通信波段具有多种潜在应用,包括光通信、偏振成像、量子发射和量子通信。然而,优化偏振控制需要在动态可调性、材料和效率等领域不断改进。在本文中,我们提出了一种基于硼墨烯的结构,它能够通过局域表面等离子体(LSP)的相干激发将光通信波段的线性偏振光转换为任意偏振光。此外,可以通过将第二个硼墨烯阵列放置在第一个硼墨烯阵列的顶部并使它们的晶面相对旋转90°来实现双层硼墨烯结构。通过独立控制双层硼墨烯的载流子浓度可以切换反射光的偏振态的旋转方向。最后利用偶极子源实现偏振光的发射,其发射速率比自由空间中的发射速率高两个数量级,并且可以通过操纵载流子浓度来动态控制偏振态。我们的研究简单紧凑,在偏振器、偏振探测器和量子发射器领域具有潜在的应用。1.引言 偏振是电磁波的本征特性之一,它表示电磁矢量在空间中方向改变的性质[1],包括三种偏振态:线偏振光(LPL)、椭圆偏振光(EPL)和圆偏振光(CPL)。在通信和传感领域,与LPL相比,CPL使光能够抵抗环境变化,并且忽略了散射和衍射的影响[2-4]。直接产生CPL比较困难,但可以通过调节两个正交电场分量之间的电磁振幅和相位,将LPL转换成CPL[5]。超材料可以灵活地操控光的散射振幅、相位和偏振,理论上可以将光的波前塑造成任何所需的形状。偏振转换的早期研究表明,由贵金属组成的超材料
实验物理学的科学进步不可避免地依赖于基础技术的不断进步。激光技术可以实现受控的相干和耗散原子光相互作用,而微光学技术则可以实现标准光学无法实现的多功能光学系统。本论文报告了这两项技术的重要进展,目标应用范围从里德堡态介导的量子模拟和光镊阵列中单个原子的计算到高电荷离子的高分辨率光谱。报告了激光技术的广泛进展:通过引入机械可调透镜支架,外腔二极管激光系统的长期稳定性和可维护性得到显著改善。开发了基于类似透镜支架的锥形放大器模块。二极管激光系统由数字控制器补充,用于稳定激光频率和强度。控制器提供高达 1.25 MHz 的带宽和由商业 STEMlab 平台设定的噪声性能。此外,还开发了针对强度稳定和 Pound-Drever-Hall 频率稳定进行优化的散粒噪声受限光电探测器以及用于 MHz 范围拍音的光纤探测器。通过分析用于波长为 780 nm 的 85 Rb 激光冷却的激光系统的性能,证明了所提出技术的能力。参考激光系统稳定到由调制传输光谱提供的光谱参考。分析该光谱方案以发现高调制指数下的最佳操作。使用紧凑且经济高效的模块产生合适的信号。实现了一种基于光学锁相环的激光偏移频率稳定方案。来自参考激光系统的所有频率锁定均提供 60 kHz(FWHM)的 Lorentzian 线宽以及 10 天内 130 kHz 峰峰值的长期稳定性。基于声光调制器与数字控制器相结合的强度稳定允许在微秒时间尺度上进行实时强度控制,并辅以响应时间为 150 纳秒的采样保持功能。对激光系统的光谱特性提出了很高的要求,以实现量子态的相干激发。在本论文中,通过引入一种用于二极管激光器的新型电流调制技术来增强主动频率稳定的性能。实现了从 DC 到 100 MHz 的平坦响应和低于 90 ◦ 的相位滞后,最高可达 25 MHz,从而扩展了可用于激光频率稳定的带宽。将该技术与快速比例微分控制器相结合,实现了两个激光场,相对相位噪声为 42 mrad rms,用于驱动铷基态跃迁。通过双光子方案进行相干里德堡激发的激光系统通过从 960 nm 倍频提供 780 nm 和 480 nm 的光。从单模光纤获得的 480 nm 输出功率为 0.6 W。两个激光系统的频率都稳定在高精细度参考腔中,导致 960 nm 处的线宽为 1.02 kHz(FWHM)。数值模拟量化了有限线宽对里德堡拉比振荡相干性的影响。开发了一种类似于 480 nm 里德堡系统的激光系统,用于高电荷铋的光谱分析。先进的光学技术也是微光学镊子阵列的核心,它提供了前所未有的系统尺寸可扩展性。通过使用优化的透镜系统与自动评估程序相结合,演示了具有数千个点且阱腰小于 1 µm 的镊子阵列。使用增材制造工艺生产的微透镜阵列实现了类似的性能。微透镜设计针对制造工艺进行了优化。此外,还分析了由于抑制谐振光导致的偶极阱散射率,证明了使用锥形放大器系统生成偶极阱的可行性。