2. 原子-腔光物质界面 5 2.1. 动机和结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...非相干过程 . ...产生的复杂光子模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.6.1. 弱相干脉冲 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 47
我们考虑了经受连贯驱动器的非线性损耗谐振器的光子晶格,该系统记得其拓扑阶段。最初,该系统在拓扑上是微不足道的。应用额外的相干脉冲后,强度会增加,从而调节系统中的耦合,然后诱导拓扑相变。但是,当脉冲的效果消失时,系统不会返回到微不足道的阶段。相反,它记住拓扑阶段并保持其在脉冲应用过程中获得的拓扑。脉冲可以用作触发拓扑模式的放大的开关。我们进一步表明,扩增发生在不同的频率以及与脉冲的位置不同的位置,表明频率转换和强度转移。我们的工作对于触发主动拓扑光子设备的不同功能很有用。
在古典世界中遇到的自由度之间的量子纠缠是由于周围环境而挑战。为了阐明此问题,我们研究了在两分量量子系统中产生的纠缠,该量子系统包含两个巨大的颗粒:一个自由移动的光电电子,该光学的光电膨胀到中镜长度尺度和浅色的原子离子,代表光和物质的混合状态。尽管经典地测量了光电子光谱,但纠缠使我们能够揭示有关离子穿着状态的动力学的信息,以及由种子自由电子激光器传递的飞秒极端紫外线脉冲。使用时间依赖的von Neumann熵来解释观察到的纠缠产生。我们的结果揭示了使用自由电子激光器的短波长相干脉冲来生成纠缠光电子和离子系统来研究距离的怪异作用。
量子密码学现在被认为是一种有前途的技术,因为它承诺了无条件安全。近年来,正在为实现安全网络的量子密钥分布(QKD)协议的实验实现进行严格的工作。在各种QKD协议中,连贯的一种方式和差异相位移位QKD协议由于使用当前可用技术的实验实现而进行了快速的实验发展。在这项工作中,我们在电信波长处实验实现了基于光纤的相干和差异相移QKD方案。两个协议属于称为分布式相位参考协议的一类协议,其中使用弱相干脉冲来编码信息。此外,我们已经分析了有关不同参数的关键速率,例如距离,披露速率,压缩比和检测器的时间。
在古典世界中遇到的自由度之间的量子纠缠是由于周围环境而挑战。为了阐明此问题,我们研究了在两分量量子系统中产生的纠缠,该量子系统包含两个巨大的颗粒:一个自由移动的光电电子,该光学的光电膨胀到中镜长度尺度和浅色的原子离子,代表光和物质的混合状态。尽管经典地测量了光电子光谱,但纠缠使我们能够揭示有关离子穿着状态的动力学的信息,以及由种子自由电子激光器传递的飞秒极端紫外线脉冲。使用时间依赖的von Neumann熵来解释观察到的纠缠产生。我们的结果揭示了使用自由电子激光器的短波长相干脉冲来生成纠缠光电子和离子系统来研究距离的怪异作用。
光子量子存储器是量子信息处理(QIP)中的核心元素。对于可扩展且方便的实用应用,很棒的效果已根据固体制造的各种波导,专门用于集成的量子存储器。然而,QIP的基本要求的点按需存储仍然具有挑战性,可以使用这种集成的量子内存来实现。在这里,我们报告了在151 EU 3+表面上制造的片上波导内存中的按需存储:Y 2 SiO 5晶体,利用鲜明的原子频率梳子协议。99的量子储存功能。3%±0。2%的单光子级相干脉冲获得,远远超出了使用经典措施和培训策略可实现的最高实现。带有需求检索能力的开发的集成量子存储器代表了朝着量子网络中集成量子节点的实际应用的重要步骤。
本节详细阐述了用于我们的自旋轨道Qudit生成和检测的光学设置。发射器负责秘密密钥生成,如图S2A。 1064 nm纳秒脉冲激光器会产生泵浦脉冲(脉冲宽度约为10 ns)。 因此,泵浦脉冲是由SLM显示的相掩码(大约100 Hz)所显示的,然后通过物镜透镜(×20,NIR增强)聚焦在Ingaasp Microlaser芯片平面上。 通过相同的物镜准确地通过相同的物镜将1547 nm的自旋轨道光子准直并用二分色镜过滤。 由于来自两个空间分离的微孔的自旋轨光子起源,因此这些光子在准直时将有横向动量不匹配。 为了补偿这种不匹配,将由硅/二氧化硅二阶光栅制成的光束组合器放在芯片的傅立叶平面上。 来自两个环的1级衍射梁被合并为单个准梁,这是旋转轨道Qudits的路径。 最后,将中性密度(ND)滤光片合并为充当衰减器,使发射机的弱相干脉冲(WCP)输出能够。S2A。1064 nm纳秒脉冲激光器会产生泵浦脉冲(脉冲宽度约为10 ns)。因此,泵浦脉冲是由SLM显示的相掩码(大约100 Hz)所显示的,然后通过物镜透镜(×20,NIR增强)聚焦在Ingaasp Microlaser芯片平面上。通过相同的物镜准确地通过相同的物镜将1547 nm的自旋轨道光子准直并用二分色镜过滤。由于来自两个空间分离的微孔的自旋轨光子起源,因此这些光子在准直时将有横向动量不匹配。为了补偿这种不匹配,将由硅/二氧化硅二阶光栅制成的光束组合器放在芯片的傅立叶平面上。来自两个环的1级衍射梁被合并为单个准梁,这是旋转轨道Qudits的路径。最后,将中性密度(ND)滤光片合并为充当衰减器,使发射机的弱相干脉冲(WCP)输出能够。
量子密钥分发 (QKD) 是一种使用光的量子态作为可信信使的通信方法,这样,任何对信息传输的窃听企图都会被揭示为对状态进行测量过程的底层量子物理的一部分。1-3 虽然基本协议在其假设范围内是安全的,但实际的 QKD 系统可能会因原始协议方案的不完善实现、准备和检测设备不完善,或通过侧信道将信息泄露出两个通信伙伴所谓的安全范围而表现出漏洞。4-6 已经通过技术措施和高级协议识别和解决了这类漏洞。例如,光子数分裂攻击(其中单个光子被微弱的相干脉冲近似)、7,8 特洛伊木马攻击、3,9 各种定时攻击、10-12 以及各类信息泄漏到寄生自由度中。 QKD 系统最关键的漏洞可能是针对单光子探测器的探测器致盲/假态攻击。13 实验证明,这种攻击有效
SCANTER 2000 雷达系列可在所有天气条件下探测小目标。SCANTER 2000 是一款 X 波段、2D、全相干脉冲压缩雷达,基于固态发射机技术,具有数字软件定义功能。它特别适用于船舶交通服务 (VTS)、河流和内港监控。室外收发器单元非常小,重量仅为 26 公斤,可以放置在靠近天线的桅杆上,以最大限度地降低安装要求和成本以及天线和收发器之间的波导损耗,从而实现高效的解决方案。SCANTER 2000 系列提供完全集成的解决方案,具有自动处理和低生命周期成本。IALA 标准建议 SCANTER 2000 满足专业 VTS 应用的要求,这些应用注重质量和耐用性。使用 Terma 18' 紧凑型天线,它符合 IALA 标准建议,最大可达 36 nmi。收发器还可以与满足要求的较小天线配合使用,通常用于港口和 VTS 间隙填充。
全球规模的量子通信网络将需要高效的长距离量子信号分布。在没有量子存储器和中继器的情况下,光纤通信信道会因指数损耗而受到范围限制。卫星通过利用更温和的平方反比自由空间衰减和长视线来实现洲际量子通信。然而,卫星量子密钥分发 (QKD) 系统的设计和工程非常困难,与地面 QKD 网络和操作的特征差异带来了额外的挑战。对卫星 QKD (SatQKD) 进行建模的典型方法是使用完全优化的协议参数空间和很少的有效载荷和平台资源限制来估计性能。在这里,我们分析了实际约束如何影响 SatQKD 对具有有限密钥大小效应的 Bennett-Brassard 1984 (BB84) 弱相干脉冲诱饵态协议的性能。我们在任务设计中考虑了工程限制和权衡,包括有限的在轨可调性、量子随机数生成率和存储以及源强度不确定性。我们量化了实际的 SatQKD 性能限制,以确定长期密钥生成能力,并提供重要的性能基准来支持即将进行的任务的设计。