摘要:具有高相干性的热排放,尽管不如激光的热排放,但在许多实际应用中仍然起着至关重要的作用。在这项工作中,通过利用几何扰动诱导的光学晶格三倍和相关的光辉区折叠效果,我们提出并研究中红外的热排放,并同时具有高时空和空间连贯性。与我们先前工作中的倍增扰动的情况相反,引导模式分散带的陡峭部分将折叠到三元格式中的高对称性γ点。在这种情况下,特定的发射波长仅对应于非常小的波形范围。因此,除了以30 nm左右的实验带宽为特征的高时间相干性外,所达到的热排放还具有超高的空间相干性。计算表明,在中红外的热发射波长下,空间相干长度很容易达到MM尺度。关键字:三元光栅,光彩区折,准引导模式,中红外,连贯的热发射器
纳米技术使得可以创建可用于研究大分子或生物纳米颗粒(MM或BNP)的电子特性和电子结构的纳米级结构[1-3]。在单分子电子[4]中,提议使用约瑟夫森连接(JJ)[5-7]研究小有机分子的电子性质,以及用于AndreENS的不同版本的Andreev SpectRoscopicy和Molecular Electronics方法和设备。这项工作的目的是显示基于MM或BNP的不体屏障JJ中约瑟夫森E ff Ect的可能性。为此,我们建议使用所研究的MM或BNP的特殊超导纳米级设备。在这种情况下,较大的大小由MM的2-2000 nm确定。尽管如此,如果超导体中的库珀对的相干长度和MMS或BNP的大小具有相同的数量级,则可能会发生约瑟夫森E ff ECT。实现约瑟夫森E ff ect,让我们测量电物理参数
我们报告了一项关于使用部分空间相干泵浦光束产生的下转换光子的空间相干特性的理论研究。我们研究了两种几何结构中的重合率和双光子可见性,其中双缝要么放置在泵浦光束的路径中,要么放置在信号场和闲置场的路径中。研究推断干涉条纹的可见性受泵浦参数的强烈影响;泵浦尺寸和泵浦空间相干长度。具体而言,干涉条纹的可见性随着泵浦空间相干性或泵浦横向尺寸在晶面的增加而增加。双光子可见性随传播距离的增加验证了这两种情况下的范西特-泽尼克定理。具有可控泵浦空间相干性的下转换光子,反过来又可以控制下转换光子的空间相干性和纠缠,可以在量子成像、量子通信和非线性干涉测量中找到潜在的应用。
在本文中,我们简要概述了约瑟夫森结的各种选项,这些选项应可扩展到纳米范围以用于纳米级数字超导技术。这种结应具有高临界电流 I c 和正常态电阻 R n 值。另一个要求是在制造过程中晶圆上结参数的高可重复性。我们认为“可变厚度桥”几何的超导体 - 正常金属 - 超导体 (SN-N-NS) 约瑟夫森结是满足这些要求的有希望的选择。在 S 电极之间的距离与 N 材料的相干长度相当的情况下,对 SN-N-NS 结进行了理论分析。对于流过结的电流为 I c 量级的结,推导出提供 S 电极中超导存在的结几何参数的限制。分析了结加热以及可用的散热机制。所得结果表明,可以使用成熟的工艺流程,利用广泛使用的材料组合(如 Nb/Cu)制造出具有高(亚毫伏)I c R n 乘积值的 SN-N-NS 结。结面积可以缩小到在 40 纳米工艺框架内制造的半导体晶体管的面积。
磁性材料中的自旋波具有超低能量耗散和长相干长度,是未来计算技术的有前途的信息载体。反铁磁体是强有力的候选材料,部分原因是它们对外部场和较大群速度的稳定性。多铁性反铁磁体,例如 BiFeO 3 (BFO),具有源于磁电耦合的额外自由度,允许通过电场控制磁结构,从而控制自旋波。不幸的是,由于磁结构的复杂性,BFO 中的自旋波传播尚不明确。在这项工作中,在外延工程、电可调的 1D 磁振子晶体中探索了长距离自旋传输。在平行于和垂直于 1D 晶体轴的自旋传输中发现了显著的各向异性。多尺度理论和模拟表明,这种优先磁振子传导是由其色散中的群体不平衡以及各向异性结构散射共同产生的。这项工作为反铁磁体中的电可重构磁子晶体提供了途径。
我们考虑二维超导体外部的流浪磁场噪声。我们的考虑是由最近的实验激发的,该实验观察到基于钻石氮脱位中心的松弛,在超导临界温度下方的磁场噪声中有所增强。超导状态的标准两流体模型并未捕获这种增强,最近提议解释这种NV弛豫计实验。相反,我们表明微观BCS理论捕获了这种增强,并且与类似的理论和现象相比,被称为Hebel-Schlicter Peak(或相干峰),在材料中核自旋的松弛中观察到。主要区别在于,NV探测样品外的长波长磁噪声,而核自旋探测样品内部的局部超细噪声。因此,NV探测的噪声取决于其高度,并且可以在原始样品中探测超流体相干长度。最后,我们讨论了NVS通过与上述BCS理论的偏差探测非常规超导性的潜在途径。
外尔半金属 MoTe 2 为研究外尔物理与超导之间的相互作用提供了难得的机会。最近的研究发现,Se 取代可以将超导性提高到 1.5 K,但会抑制对于外尔态的出现至关重要的 T d 结构相。迄今为止,尚未建立对增强超导和 T d 相可能共存的微观理解。在这里,我们使用扫描隧道显微镜研究了最佳掺杂的超导体 MoTe 1.85 Se 0.15,其体相 T c ∼ 1.5 K。通过准粒子干涉成像,我们发现了具有破缺反演对称性的低温 T d 相的存在,其中超导性全局共存。此外,我们发现从上临界场和涡旋附近的态密度衰减中提取的超导相干长度远大于现有化学无序的特征长度尺度。我们发现 MoTe 1.85 Se 0.15 中的 Weyl 半金属正常相具有稳健的超导性,这使它成为实现拓扑超导的有希望的候选材料。
在过去的十年中,我们目睹了物理学对无分散频段的迅速增长[1-8]。在平坦带(FB)化合物中,由于这些频段的宽度非常狭窄,因此库仑能量是独特的相关能量尺度。这将这些系统置于高度相关的材料等级中,并打开了对异国情调和意外的植物现象和量子阶段的访问。不可否认,最引人注目的特征之一是在费米速度消失的化合物中可能具有高座位温度超导性(SC)的可能性[9-18]。SC的这种不合时宜的形式具有频带间的性质,并且由称为量子公制(QM)的几何量产生。QM连接到量子几何张量的实际部分[19,20],并提供了与FB Bloch特征状态相关的典型表面。到目前为止,这种不寻常形式的超导性的独特实验实现在魔法角度附近的扭曲的石墨烯(Moiré)中已经观察到了这种异常的超导性[8,21 - 26]。众所周知,在传统的BCS系统中,SC具有内在性质[27,28],相干长度ξc由ξBCS=ℏv f
extended 2D Tinkham model Yue Liu, 1,2,† Yuhang Zhang, 1,2,† Zouyouwei Lu, 1,2,† Dong Li, 1,3,* Yuki M. Itahashi, 3 Zhanyi Zhao, 1,2 Jiali Liu, 1,2 Jihu Lu, 1,2 Feng Wu, 1,4 Kui Jin, 1,2,5 Hua Zhang,1 Ziyi Liu,1小居,1,2,5,** Zhongxian Zhao,1,2,5 1北京国家冷凝物质物理学实验室,物理研究所,中国科学院,中国100190,中国。2个物理科学学院,中国科学院,北京100049,中国。 3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。2个物理科学学院,中国科学院,北京100049,中国。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。5,中国广东523808的东瓜材料实验室。摘要。批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。我们进一步证明了该模型在(Li,Fe)Ohfese和cetyltrimethyl铵(CTA +) - 钙化(CTA)0.5 SNSE 2超导体中的有效性,突出了其广泛的适用性。这项工作提供了对大量2D超导性的有价值的见解,并建立了扩展的2D Tinkham模型,用于定量提取插入的分层超导体中的固有超导性能,尤其是那些表现出明显的层间未对准的超导体。†这些作者也同样贡献。*联系作者:dong.li.hs@riken.jp **联系作者:dong@iphy.ac.cn
在凝结物理学中,旋转超氟4和冷原子气体的行为进行了广泛的研究,请参见。[1 - 6]及其中的参考。具有低角速度,ω<ωc 1,超氟4和冷原子气体,放置在最初静止的容器内,由于基本激发的随后旋转而不会响应,因为在这种情况下,基本激发和涡流的产生在这种情况下是无能为力的。随着旋转频率ω的增加,对于ω>ωc1,系统会产生浸入超氟物质中的正常物质的细丝涡旋。然后,对于ω>ωlat>ωC1,涡旋形成三角形晶格,该晶格模拟了容器的刚体旋转。对于ω>ωC2>ωlat>ωC1,经典的冷凝物场被完全破坏。静息金属超导体对外部均匀恒定磁场h的作用做出反应,与中性超氟在旋转方面的响应类似,请参见。[1,7]。通过在该表面层中发生的超导电流(Meissner-Higgs效应),筛选在超导体上的低磁场h(在边界附近的磁场L H(有效光子质量)的所谓穿透深度上进行筛选。超导体在两个类别(第一和第二种的超导体)上细分,这是在Ginzburg-Landau参数的依赖性的依赖性的,其中L ϕ是所谓的相干长度,是公寓