课程目标:细胞生物学课程提供了对细胞细胞器和组件的结构和功能的基本理解,以及细胞与其微环境单元I-I:细胞结构和功能的功能相互作用:细胞大小和形状的多样性;细胞理论;原核细胞和真核细胞的结构;细胞细胞器及其组织,细胞内室内化 - 肾上腺素 - 类型和功能,过氧化物酶体,内体和溶酶体的结构和功能,线粒体的结构功能和叶绿体;细胞外基质,微生物中细胞壁的结构和功能。UNIT-II: PLASMA MEMBRANE STRUCTURE AND FUNCTION: Chemical composition and molecular arrangement (lipid bilayer, membrane proteins and carbohydrates), models of membranes (fluid mosaic)., Membrane Transport: Active and passive transport of ions, Na+/K+ pump, ATPase pumps, Co-transport, Symport, Antiport, Endo cytosis and Exocytosis.单位-III:细胞相互作用和细胞骨架:细胞粘附分子:钙粘蛋白,类似于分子的免疫球蛋白,整联蛋白和Selectins。细胞连接:紧密连接,脱骨体,半底体和间隙连接。微管,微丝及其动力学。Centrosome,Cilia,Flagella。有丝分裂仪和染色体的运动。单位IV:细胞周期和检查点和癌症:细胞周期 - 细胞周期,相间,有丝分裂,减数分裂和细胞因子的细胞周期控制和检查点的各个阶段,细胞周期中断;癌症;类型和阶段。肿瘤抑制基因和原子基因。癌症的分子基础。wnt,jak-stat途径。单位V:细胞信号传导,凋亡和坏死:概述,胞质,核和膜结合受体,次级使者的概念,CAMP,CGMP,CGMP,蛋白质激酶,G蛋白,信号传输机制。衰老,坏死分类,坏死的形态模式,坏死原因,凋亡 - 程序性细胞死亡;凋亡的机制;由内部信号触发的凋亡;由外部信号触发的凋亡;凋亡诱导因子;癌症细胞凋亡的凋亡 - 程序性细胞死亡;凋亡的机制;由内部信号触发的凋亡;由外部信号触发的凋亡;凋亡诱导因子;癌症的凋亡。
在2023年,Pothovoltaic(PV)发电的全球安装能力打破了另一个记录。国际能源机构最近发布了2023年的年度报告显示,去年,全球PV发电的新安装能力约为375 GW,增长了30%以上(Szalóczy等人,2024年)。中国是世界上最大的光伏市场和产品供应商(Fu等,2024)。但是,分布式PV发电的固有间歇性和波动引入了相当大的不确定性,因此需要对PV场景进行建模,以减轻这种不确定性并支持PV行业的增长。在影响PV输出的各种因素中,天气条件在引起光伏生成的爆发和不确定性方面起着重要作用。然而,当前的绝大多数PV场景生成文献都会直接产生PV场景,这可以忽略天气对PV的重要影响(Cai等,2023)。为了说明与天气相关的不确定性并对PV发电模型施加更严格的物理约束,PV方案是通过模拟天气场景模拟的,在模型中既有特定的院子和通用性。因此,开发全年天气情况的随机模拟模型对于为PV发电建模提供准确的天气信息至关重要(Rohani等,2014)。当前的天气生成模型主要依赖于涉及概率计算的数学方法。li et la。提出了一个两阶段的方案。Sparks等。最常见的方法是将天气数据的分布直接拟合概率分布,例如β分布后的阳光强度(Rathore等,2023)和Weibull分布后的风速(Hussain等,2023)。在第一个阶段,天气序列是通过单位多变量天气发生器模拟的,在第二阶段,经验副方法用于重现可变量的相互间隔和相间依赖性以及时间结构(Li等,2019)。理查森(Richardson)基于动态的两参数伽马分布模型和两个参数β分布模型提出了WGEN(Richardson,2018)。WGEN目前是广泛使用的天气生成器模型之一,许多其他天气生成器模型是根据WGEN的改进和扩展而开发的,例如美国农业农业部农业研究服务部开发的小木屋。通过将部分时间序列转换为推断的线性函数模型,提出了一种新颖的方法,将天气变量视为具有时间行为的高斯变量(Sparks
实践,其容量要低得多,而且其速度性能也很差。循环与高电位高有关,导致低能量效率,而随附的寄生反应会导致循环寿命短。锂,带来了其自身的一系列问题,包括较差的库仑效率(由于一系列寄生反应导致固体电解质相间(SEI)(SEI)和树突形成)。可能需要合适的膜来防止在电极上形成的氧气和降解产物的交叉,至少从原则上讲,以帮助减轻树突问题。此外,这些挑战是用于使用氧气,严格锂 - 氧气电池(LOB)的细胞,并且空气的使用带来了其他问题,这主要是由于存在二氧化碳。我们和其他人广泛讨论和审查了实验室的各种挑战。1,2,例如,我们中的一些讨论系列(Ellison等人,https://doi.org/10.1039/d3fd00091e)提出,要构建一个实用的高能量 - 能量实验室,该实验室将以适度的周期速率运行,需要将空气压缩到20 bar左右,并且需要大约100 m的碳电极(> 90%)碳电极厚度约为100 m。电解质也需要具有高沸点(约大约250°C)防止过量蒸发并具有有利的氧运输特性,例如通过,例如,溶剂分子和/或含有Apolaruorasined或烷基区域的盐。可以缓解这些要求的可能方法包括使用分层多孔结构,泵送电解质,通过细胞泵送电解质或进一步增加电池中架空气体的压力。其中一些方法表现出重要的工程挑战,可以实现,所有这些方法都带来了相关的成本和/或质量。本文仅限于对一些用于理解锂氧气中功能和故障的表征方法的简短讨论。已用于研究电池的各种技术,包括拉曼光谱研究排放产品,3 X射线光电光谱(XPS),用于研究锂SEI,4和X射线差异(XRD)5的组成,以研究晶体排放产品,以及其他许多内容,以及许多现有评论中的晶体排放产品。1,2因此,我们主要关注的是审查一些作者开发的许多方法,这些方法通常(但并非独家)涉及使用NMR光谱,然后最终通过对这些系统中使用EIS和Operando nmr的lithium-Metal So s so tarriake the Tarre fer呈现新的结果。
DNA压实是在有丝分裂过程中凝结和分辨率的凝结和分辨率所必需的,但是单个染色质因子对该过程的相对贡献知之甚少。我们使用高速爪蟾卵提取物和光学镊子开发了一种生理,无细胞的系统,以研究实时有丝分裂染色质纤维的形成,并在单个DNA分子上进行力诱导的拆卸。与将DNA压缩约60%的相间提取物相比,中期提取物将DNA的长度降低了90%以上,这反映了这两种情况下全染色体形态的差异。抑制核小体组装的核心组蛋白伴侣ASF1的耗竭,将中期纤维压实的最终程度降低了29%,而接头组蛋白H1的耗竭效果更大,将总压实降低了40%。 与对照组相比,两种耗竭都降低了压实率,导致了更短的分解时间,并提高了力诱导的纤维拆卸速度。 相比之下,中期提取物中冷凝蛋白的耗竭强烈抑制纤维组件,从而导致瞬态压实事件在高力下迅速逆转。 总的来说,这些发现支持了一种投机模型,在该模型中,冷凝蛋白在有丝分裂DNA压实中起主要作用,而核心和接头组蛋白起作用,可在循环挤出过程中减少滑移并调节DNA压实程度。抑制核小体组装的核心组蛋白伴侣ASF1的耗竭,将中期纤维压实的最终程度降低了29%,而接头组蛋白H1的耗竭效果更大,将总压实降低了40%。与对照组相比,两种耗竭都降低了压实率,导致了更短的分解时间,并提高了力诱导的纤维拆卸速度。相比之下,中期提取物中冷凝蛋白的耗竭强烈抑制纤维组件,从而导致瞬态压实事件在高力下迅速逆转。总的来说,这些发现支持了一种投机模型,在该模型中,冷凝蛋白在有丝分裂DNA压实中起主要作用,而核心和接头组蛋白起作用,可在循环挤出过程中减少滑移并调节DNA压实程度。
DNA压实是在有丝分裂过程中凝结和分辨率的凝结和分辨率所必需的,但是单个染色质因子对该过程的相对贡献知之甚少。我们使用高速爪蟾卵提取物和光学镊子开发了一种生理,无细胞的系统,以研究实时有丝分裂染色质纤维的形成,并在单个DNA分子上进行力诱导的拆卸。与将DNA压缩约60%的相间提取物相比,中期提取物将DNA的长度降低了90%以上,这反映了这两种情况下全染色体形态的差异。抑制核小体组装的核心组蛋白伴侣ASF1的耗竭,将中期纤维压实的最终程度降低了29%,而接头组蛋白H1的耗竭效果更大,将总压实降低了40%。 与对照组相比,两种耗竭都降低了压实率,导致了更短的分解时间,并提高了力诱导的纤维拆卸速度。 相比之下,中期提取物中冷凝蛋白的耗竭强烈抑制纤维组件,从而导致瞬态压实事件在高力下迅速逆转。 总的来说,这些发现支持了一种投机模型,在该模型中,冷凝蛋白在有丝分裂DNA压实中起主要作用,而核心和接头组蛋白起作用,可在循环挤出过程中减少滑移并调节DNA压实程度。抑制核小体组装的核心组蛋白伴侣ASF1的耗竭,将中期纤维压实的最终程度降低了29%,而接头组蛋白H1的耗竭效果更大,将总压实降低了40%。与对照组相比,两种耗竭都降低了压实率,导致了更短的分解时间,并提高了力诱导的纤维拆卸速度。相比之下,中期提取物中冷凝蛋白的耗竭强烈抑制纤维组件,从而导致瞬态压实事件在高力下迅速逆转。总的来说,这些发现支持了一种投机模型,在该模型中,冷凝蛋白在有丝分裂DNA压实中起主要作用,而核心和接头组蛋白起作用,可在循环挤出过程中减少滑移并调节DNA压实程度。
附图列表 图 (1-1): - 本项目的风能转换系统框图 .............................................................................. 10 图 (3-2):- 水平轴和垂直轴风力涡轮机视图 .............................................................................. 16 图 (3-3): - 上风向三叶片 HAWT 和下风向两叶片 HAWT 示意图 17 图 (3-4): - 直接驱动和齿轮驱动风力涡轮机的内部结构 ............................................................. 18 图 (3-5):- 水平轴风力涡轮机的配置 ............................................................................................. 19 图 (3-6): - 垂直轴风力涡轮机所需的零件和组件 ............................................................................. 20 图 (3-7): - Simulink 中风力涡轮机模型的参数设置 ............................................................................. 22 图 (3-8): - 具有设置涡轮机参数的涡轮机功率特性 ............................................................................. 22 图 (3-9): - 鼠笼感应发电机剖面图 (Wenping Cao,2012 年 3 月) ............................................................................................................................................. 24 图(3-10): - 双馈感应发电机剖面图 (Wenping Cao, March 2012) ............................................................................................................................................. 25 图 (3-11): - 同步发电机剖面图 ............................................................................................................................. 27 图 (3-12): - 永磁同步发电机剖面图 (Wenping Cao, March 2012) ............................................................................................................................. 28 图 (3-13): - Matlab 中永磁同步机的配置 (用于项目) ............................................................................................................................. 31 图 (3-14): - Matlab 中永磁同步机的参数 (用于项目) ............................................................................................................. 32 图 (4-15): - 风能转换系统的电力电子部分框图 ............................................................................................................................. 34 图 (4-16): - 三相桥式整流器的电路图 (Rashid, 2014) ............................................................................................. 35 图 (4-17): - 输入波形和三相桥式整流器的输出电压 (Rashid, 2014) ...................................................................................................................................... 36 图 (4-18):- 降压转换器的电路图 (Rashid, 2014) ...................................................................... 39 图 (4-19): - 模式 1 的降压转换器等效电路图 (Rashid, 2014) ............................................. 40 图 (4-20):- 模式 2 操作的降压转换器等效电路图 (Rashid, 2014) ............................................................................................................................................... 40 图 (4-21):- 电感电流连续流动时降压转换器的输入和输出电压和电流的波形 ............................................................................................. 41 图 (4-22): - 恒压控制图像 ............................................................................................................. 45 图 (4-23): - 恒流控制图像 ............................................................................................................. 46 图 (4-24):- 风能转换系统的电池参数设置 ............................................................................. 47 图 (4-25):- 电池的标称电流放电特性 ............................................................................................. 48 图 (5-26):- 不同桨距角值的风力涡轮机特性 ............................................................................. 50 图 (5-27):- 相间电感相对于转子电角度的变化 ............................................................................. 51 图 (5-28): - 降压转换器的等效电路 ............................................................................................. 52 图 (5-29): - 充电控制示意图 (Her-Terng Yau, 2012) ........................ 54 图(5-30): - Buck 转换器等效电路 .............................................................................. 55
2毛鲁理工学院(IMT)教授;概括。这项研究介绍了将石墨烯NAN板(GNP)掺入环氧树脂聚合物基质(Araldite Ly 5052)中,旨在改善材料影响性能。移植纳米复合材料对于研究高级材料至关重要,因为它提供了源自其结构的独特特性。植物反过来具有显着的电导率和热电导率,具有出色的机械电阻。这些特征使从电子设备到先进的结构材料的各种应用中具有高度有希望的石墨烯纳米复合材料。使用了水乳液方法,通过扫描电子显微镜(SME)(SME)评估环氧树脂中的GNP分散剂,并通过扫描探索性热量法(DSC)评估了热影响。结果表明该方法具有良好的可重复性,有效地从乳液中去除水,并导致令人满意的分散体。在撞击测试中,添加0.1%CNP揭示了材料的机械性能的改善。然而,高于此值的浓度没有提供额外的好处,在某些情况下,浓度会损害树脂的机械行为。尽管具有0.1%CNG的改进是显而易见的,但与其他研究的比较表明,尽管其生产和成本复杂,但氧化石墨烯(GO)还是有效的。复合材料由两个阶段,提名和加固形成。通常,矩阵是一种聚合物,金属或陶瓷材料。简介复合材料是多相材料,源自两种或多种材料的仔细组合,它们通常在相间牢固地结合在一起,其中一些最终性质超过了构成它的材料的特性。矩阵是周围材料的连续相位的连续相位,并填充了增援部队之间的区域,从而提供了复合材料的结构支持。加固,反过来是一个不连续的阶段,通常用于使矩阵改善其性质。此阶段由纤维,颗粒或其他形式组成,其方向,分散和体积对机械,物理,化学和各向异性特性有直接影响。许多天然和人造材料可以分类为复合材料,例如木材,骨头,增强橡胶,填充聚合物,混凝土,金属联盟,多晶骨料等(Hashin,1983)。复合材料的特定且高度有希望的类别称为聚合物纳米复合材料。聚合物纳米复合材料通常被定义为聚合物基质和小于100 nm的尺寸的增强的组合。这些添加剂可以是一个维度(例如纳米管和纤维),两个维(例如层)或三维(包括球形颗粒)。在过去的几十年中,这种类型的材料吸引了学术界,就像少量的纳米活性一样,该材料的机械性能有了很大的一般改进。这一事实是由于与微观和宏观添加剂相比,纳米活性体积的表面积比较高(Mai等,2006)。是石墨烯,这种材料在科学和技术领域非常相关。他的发现发生在2004年,曼彻斯特大学的研究人员于2010年赢得了诺贝尔物理奖。它的结构由以六边形形式组织的单层碳原子组成,并以SP 2的形式杂交,将石墨烯性能
基于半导体的杂化(有机无机)复合物的制备,用于降解微塑料和其他污染物。概况Aurelio Bifieco是一名未固定的助理教授(RTDA-考试部分:03/Chem-06,纪律科学领域(SSD):“化学,材料和材料和生产工程系的技术基础(Chem-06/A)”他的研究活动集中在溶胶化学,聚合物化学,催化剂,功能性金属的混合氧化物,涂料,阻燃性和纳米技术上。他还曾在同一大学担任博士后研究员,并与工业合作(Geven S.P.A.,EMPA-瑞士联邦材料科学与技术实验室,Laminazione Sottile S.P.A.,Procter&Gamble S.P.A.等)),涉及超级吞噬性,阻燃材料和纳米复合材料。他于2020年获得“那不勒斯大学(UNINA)Federico II”的“工业产品和过程工程”博士学位。他访问了“ Empa”圣加伦的博士生,在那里他曾是添加剂和化学小组的成员,开发了新型杂交火焰的环氧材料策略。他正在访问“ Ku Leuven”的博士生,以在超声和微波技术领域的一所学校。作为Erasmus的学生,他在“ Tu Wien”研究所在“ Tu Wien”研究所进行了硕士学位论文,对燃烧和流化的床系统进行了研究。该角色在2022年10月5日颁布,将于2022年至2025年填补。他在“那不勒斯大学Federico II”的“化学系”中撰写了学士学位论文,研究了用于光学应用的液晶聚合物的合成。Aurelio Bifieco是伊拉斯mus委员会和第三任务委员会的成员(这两个成员资格已在10/02/2022的日期颁布)。另外,Aurelio Bifulco是化学,材料与生产工程系(Naples Federico II)的执行委员会(Membro Della Giunta di dipartimento)的成员。Aurelio Bifieco是意大利化学学会和意大利大分子协会的成员。学术和专业承运人•30/12/2021-到迄今为止 - 助理教授(RTDA- NAPLES FEDERICO II(化学,材料与生产工程系)的助理教授(RTDA-无固定的A型研究人员)。SSD:技术基础(Chem-06/A)。•01/02/2020-2021/2021-纳普尔斯大学Federico II(化学,材料和生产工程系)的研究助理(博士后),用于一个工业项目,涉及制造火焰智障的Bio -Composites(06/2020/ASS.RIC。SSD:技术的化学基础(Chem-06/A)。•2017年1月2日 - 12/05/2020 -Naples Federico II(化学,材料与生产工程系)的工业产品和工艺工程博士学位(SSD Chem -06/A)。论文:“天然纤维的表面修饰和无机纳米颗粒的合成,用于定制相间和绿色复合材料的阻燃性”。(导师:Francesco Branda教授(UNINA)教授,Giulio Malucelli教授(Polito),Brigida Silvestri教授(Unina),Sabyasachi Gaan博士(EMPA))。•2016年1月3日 - 2017年3月31日 - 那不勒斯大学费德里科二世(化学,材料和生产工程系)的研究员,用于“ Interiors多功能材料(INM)”的工业项目。研究主题:航空航天行业的二氧化硅 - 环氧杂交纳米复合材料的合成和制造。•2015年1月1日 - 2015年3月31日 - 尼格里斯集团(De Nigris Group)的工艺工程师(食品和饮料行业),SS87,80023 Caivano,Naples,Naples。活动:精益制造工具,维护管理,国际食品
已知抽象电离辐射会引起对造血系统的重大损害,这主要损害骨髓功能。叶酸在单碳代谢和各种细胞过程(包括DNA合成和修复)中起着至关重要的作用。本研究研究了叶酸参数对X射线照射的雄性兔子中血液学参数和骨髓组织学的潜在辐射保护作用。实验设计包括四个组:(1)对照,(2)补充叶酸,(3)X射线暴露,以及(4)补充叶酸和X射线的合并。血液学分析表明,X射线暴露后,白细胞(WBC),红细胞(RBC)和血小板(PLT)计数显着下降,表明辐射诱导的造血抑制。值得注意的是,补充叶酸部分恢复了这些参数,表明其在促进造血恢复中的作用。此外,对骨髓的组织学检查显示,叶酸处理的组的细胞性增加,进一步支持其针对辐射引起的骨髓抑制的保护作用。这些发现表明,补充叶酸可能会减轻电离辐射的不良造血作用,从而强调其作为辐射保护剂的潜力。关键字。放射保护,叶酸,血液学,骨髓,组织病理学。引入辐射引起的对造血系统的损害是电离辐射暴露的有据可查的结果,主要影响骨髓功能和外周血细胞计数。电离辐射会产生活性氧(ROS),导致氧化应激和细胞凋亡,尤其是在造血干细胞和祖细胞中[1,2]。叶酸是参与DNA合成和修复的必需B维生素,已假设具有辐射保护性能。急性辐射综合征(ARS)通常称为辐射疾病,是由于全身暴露于高剂量的电离辐射而发生的。这种情况的特征是生化参数严重中断,可能会对多个器官系统产生不利影响,包括造血[3],心血管[4]和胃肠道系统[5]。此外,大脑发育尤其容易受到电离辐射的影响,如大量研究所证明[6]。产前暴露于X-radiation与人类和实验动物的大脑的组织学变化有关,从而导致学习和记忆障碍[7]。造血干细胞以其高放射敏感性而闻名,在维持血细胞计数中起着至关重要的作用,这仍然是评估疾病状况的关键诊断工具。长时间暴露于X射线会导致外周血细胞谱发生显着改变,包括由于血小板水平降低而导致中性粒细胞计数,严重的淋巴细胞减少症和血小板减少症。电离辐射通常会抑制骨髓活性,导致外周循环中血细胞的产生降低,尽管其对大多数细胞或组织的直接影响相对较少[8]。在Geng等人的一项研究中。在Geng等人的一项研究中。全身辐射的全身作用主要在血液学,胃肠道和脑血管系统中表现出来,从而导致广泛的功能障碍和器官损伤[9,10]。这些见解强调了电离辐射对细胞和全身水平的广泛而复杂的生物学影响。造血干细胞高度放射敏感,在监测疾病状况中起着至关重要的作用,血小板计数是可靠的诊断指标。暴露于0.5至1 Gy的电离辐射剂量可能会导致外周血细胞谱的显着变化,包括中性粒细胞计数升高,严重的淋巴细胞减少症和血小板水平降低(血小板减少症)。淋巴细胞特别容易受到辐射诱导的损伤,即使在低剂量为0.05-0.15 Gy的情况下也经历了相间死亡。电离辐射抑制骨髓活性,导致外周血细胞产生的减少,尽管它对大多数细胞或组织造成了最小的直接伤害[8]。辐射的全身效应扩展到各种器官系统,包括胃肠道,脑和循环系统,导致了广泛的器官功能障碍[9,10]。辐射诱导的骨髓抑制和降低的外周血计数突出了造血恢复在治疗辐射损伤中的重要性[11]。Li及其同事(2014)[12]的研究表明,辐射不仅减少造血细胞数量,而且还刺激其余细胞的激活。[8],暴露于
使用FNIRS测量值的基于内存的工作负载分类已被证明是现实的适应性BCI的理想方法,用于测量人类工作量水平。6在本文中,我们研究了与n个背任务不同条件相对应的FNIR的分类问题(即需要受试者连续记住最后的n∈F1; 2; 2; 3; 3; :: g快速变化的字母或数字)。我们在前额叶皮层(PFC)上进行了FNIRS测量,已发现这是通过正电子发射断层扫描和功能磁共振成像的与记忆相关任务的相关区域。7,8文献中的大多数n返还分类研究基于对fnirs信号的监督方法,并基于主题内部(即,在单个主题的数据获取的一次试验中)。9 - 11虽然这些研究表现出令人鼓舞的结果,但对于可以适应具有广泛生理条件的不同用户的界面系统而言,受试者和会话依赖的系统是不现实的。为了在BCI中使用,必须基于经验会议(会话逐句对齐)和跨主题(主题对准)基于FNIRS数据的工作负载分类。存在一些挑战,可以使用FNIRS数据妨碍精确的工作负载分类。我们在下面概述了它们,并提出了减轻它们的方法。第一个挑战是本文的主要重点,是处理n-back任务分类的逐项和主题变化。这些问题与机器学习中所谓的域适应性有关。12 - 14更具体地说,来自不同会话或不同主题的数据称为属于不同域,并且跨不同域(数据属于的会话或主题)的数据分布的变化被视为域移动。15由于这种现象,我们从一个领域学到的知识不能直接应用于另一个领域。为了解决这个问题,最佳运输理论和方法的最新进展(OT)16和度量测量空间比对17 - 19可用于将数据与已知标记的n个返回条件从一个会话或一个主题到同一主题或其他主题中的另一个会话的未标记的数据与未标记的数据对齐。尽管已将OT应用于具有潜在性能的域适应性,但是20,21当不存在两个空间之间的有意义的距离概念时,但是两组用于对齐的数据不共享相同的度量空间时,它会受到一定的限制。例如,对于会话逐一比对,由于信噪比较差(SNR),从两个会话中删除了一些FNIRS通道的数据。这将导致两个会话的数据嵌入两个域中的不同维度。幼稚的解决方案是从另一个会话中删除相应的通道,以确保两个会话具有相同的维度。但是,这是导致信息丧失的缺点。第二个挑战是FNIRS信号中的运动伪像。fnirs中的运动伪影通常是由于实验过程中头皮中任何源或检测器的耦合变化。31在本文中,我们提出,使用Gromov - Wasserstein(G-W)18,22和Fused Gromov - Wasserstein(FG-W)Barycenter 23将减轻此问题,并为FNIRS n-BACK任务分类的范围跨域提供算法。这会导致突然增加或减少测得的光强度,并可能影响测得的FNIRS信号。从机器学习的角度来看,运动伪影检测和校正有助于消除主题行为(抽搐,头部移动等)的任何误导性相关性分类模型从FNIRS数据中学到了什么。例如,分类模型可以识别当受试者由于受试者的头部移动而在测量信号中检测到测量信号中的峰值时,将受试者按下按钮作为需求,而不是从脑信号中检测实际的血液动力学反应。已提出了许多方法,灵感来自统计信号处理方法,例如自适应过滤,独立组件分析(ICA)和时频分析,以删除或纠正FNIRS信号中的运动伪影。24 - 30这些技术中的大多数都取决于使用辅助参考信号(例如,加速度计等)或自相间通道,或需要对运动伪影特征和清洁的FNIRS信号的特征进行某些假设。在本文中,我们使用基于稀疏优化的现成方法来自动检测和去除尖峰和台阶异常,即瞬时伪影还原算法(TARA)。