过去 15 年,无人机的使用量大幅增加。然而,目前无人机飞行许可的安全要求有一名合格的操作员,他能够做出决策并最终对飞行器的安全运行负责。航空业的未来是无人驾驶的,最终是自主的。然而,目前还没有一条明确的途径来认证自动驾驶飞行器做出目前只留给合格飞行员的决策。本文介绍了一种初步方法,用于认证自主控制器在未准备好的着陆区为大型旋翼机选择合适的着陆点。特别是,本文将把目前合格飞行员使用的步骤分解为基本要求,以定义飞行器在着陆时可以自主运行的包络线。这些要求是我们检查规范的基础,以确保它符合要求。根据分析的规范开发了一个协议,以确保飞行器在自主操作时“不会做”什么。最后,我们描述了如何将该协议用作飞行安全证据,并最终用于清除自主控制器以完成为合格飞行员保留的任务。
摘要:基于非线性动态逆(NDI)设计了纵向自动着舰系统(ACLS)控制律,以实现抑制尾流、解耦横向状态和跟踪动态期望着陆点(DTP)的目的。首先,建立F/A−18飞机六面进近非线性着舰模型,获取气动、操纵面、极限状态等参数。其次,采用俯仰角控制跟踪期望纵向轨迹的策略。基于自适应NDI设计了自动功率补偿系统(APCS)、俯仰角速率、俯仰角和垂直位置控制环路,并详细推导了稳定性分析和原理描述。采用频率响应法设计了甲板运动补偿(DMC)算法。第三,通过遗传算法对控制参数进行优化。提出了一种综合考虑飞机速度、迎角(AOA)、俯仰速率、俯仰角和垂直位置的适应度函数。最后,在半实物仿真平台上进行了综合仿真。结果表明,所采用的自动着陆控制律既能达到良好的性能,又能抑制气流尾流和横侧耦合。
在物联网时代,元宇宙被预期成为下一代互联网的着陆点,导致相关技术和应用在近年来日益普及,并逐渐成为互联网研究的重点。元宇宙作为现实世界与虚拟世界的纽带,能够为用户提供身临其境的体验。随着元宇宙概念的不断深入,许多学者和开发者开始关注元宇宙的伦理与内核。本文认为元宇宙应该以人为本,即人类构成了元宇宙的主体。为此,本文首先介绍了元宇宙的起源、特点、相关技术以及以人为中心的元宇宙(HCM)的概念;其次,探讨了以人为中心的理念在元宇宙中的体现;最后,讨论了当前HCM建设中的一些问题。本文对以人为中心的技术在元宇宙中的应用以及相关的HCM应用场景进行了详细的综述。希望本文能够为科研与开发者提供一些以人为中心的元宇宙构建的方向和思路。
本文介绍了自适应控制方法在将自主固定翼飞机回收到航空母舰上的应用。所用的控制结构是模型参考自适应控制,在俯仰、滚转、偏航和空速轴上实施,以提供飞机的 6 个自由度控制。控制系统是为 NAVAIR ExJet 飞机模型开发的。控制器的结构包括一阶线性模型跟随器和自适应批评控制器。自适应用于增强自适应批评控制器产生的命令信号,使用以下方法:自适应偏差校正器、最佳控制修改和局部线性模型补偿。基于状态空间模型的逆控制器生成控制效应器命令。控制系统参考输入是旋转速率和空速,提供外环控制器来引导飞机到达着陆点。控制系统设计是通过使用基于标称误差、时间延迟裕度和着陆精度的指标来实现的。在标称、效应器故障和控制系统建模错误条件下评估控制系统。定义的控制系统能够在标称、故障和建模错误条件下提供所需的控制。
在地面上检索它们以彻底进行。从长远来看,更加微妙,但也许更重要的是,态度的变化将伴随新的进入太空环境的自由。我们目前的空间概念是禁止的:机器和人类被不断威胁灾难的敌对条件所包围,从而限制了许多太空活动进行简短的,一次性的游览。太空运输系统将通过重复和熟悉的信心来改变这一概念。考虑,对于Examp Le,我们改变了月亮的概念。在阿波罗登陆之前,月亮对我们来说是与人类自上古以来分享的相同形象 - 偏僻,寒冷,有些浪漫的身体。我们的智力告诉我们,它与地球密切相关,但是我们的情感觉得它是遥远和无法实现的。第一个“人类的巨人步骤”是令人兴奋的Derring-Do类别。我们为这一成就感到自豪。人类做过他们以前从未做过的事情。,但随后的着陆点,对月球表面进行了广泛的电视探索,使月球成为熟悉的地方,每当我们愿意时,我们都可以返回。对空间环境的熟悉是空间
• 韩国探路者月球轨道器 (KPLO,也称为 Danuri) 是韩国首个月球探测任务,于 2022 年 8 月发射,通过弹道月球转移至极地低月球轨道。其目标包括确定未来月球任务的潜在着陆点。 • 美国宇航局/欧空局/加拿大航天局詹姆斯·韦伯太空望远镜于 2021 年 12 月 25 日发射,于 2022 年 1 月 24 日成功进入围绕地球-太阳 L2 拉格朗日点的光环轨道。 • 2022 年 9 月 29 日,美国宇航局的朱诺号航天器自 22 年前伽利略号逝世以来最近一次飞越木卫二。这次飞越缩短了航天器的轨道周期,并提供了月球表面的详细照片,为即将于 2024 年发射的欧罗巴快船任务做准备。 • 欧空局和日本宇宙航空研究开发机构的贝皮科伦坡号航天器正在顺利前往水星的途中,已经进行了第二次
简介:ISRO于2019年7月22日从印度太空港口Sriharikota推出了Chandrayaan-2 Mission。轨道器高分辨率摄像头(OHRC)板上Chandrayaan-2 Orbiter-Craft,是一款非常高的空间分辨率摄像机,可在可见的Panchronic(PAN)频段中运行。OHRC测量在可见的电磁频谱范围内从月球表面反射的太阳光。该相机设计用于在非常低的太阳高度条件下进行成像。OHRC图像被广泛用于着陆点表征,以检测小规模的特征,尤其是在Lunar表面上的较小巨石。OHRC的地面采样距离(GSD)(在Nadir View中)距离100 km的高度为0.25m和3公里。OHRC具有通过航天器操作产生多视立体声图像的能力。这些立体对可用于生成迄今可用于月球表面的最高分辨率数字高程模型(DEM)。这项研究提供了月球表面几个特定区域的OHRC多视图(Stecreo)图像的DEM生成能力。OHRC摄像机的规格:下表1中提供了OHRC摄像机的规格。
建议年级 4 年级 -12 年级 学科领域 地球科学、空间科学、语言艺术 时间线 45 分钟 标准 • 4-ESS1-1. 从岩层模式和岩层化石中识别证据,以支持对地貌随时间变化的解释。 • 4-ESS2-2. 分析和解释地图数据以描述地球特征的模式。 • MS-ESS1-3. 分析和解释数据以确定太阳系中物体的比例属性。 背景 人类想要了解我们的自然环境。熟悉我们的世界很重要。随着时间的推移,地图绘制技术不断发展。我们有键、比例、符号、经纬度坐标来精确定位地球上的确切位置,以及颜色/线条来显示海拔。凭借我们目前对地图技术的了解和阅读地球地图的能力,我们现在能够将其与火星联系起来。从纯粹的观察开始,然后轨道器收集火星图像。现在我们甚至在火星上有了探测器和着陆器。这种侦察与技术相结合,使我们能够突破探索的极限。地图是其中的重要组成部分。它们让我们熟悉陌生的事物,准确地侦察出潜在的着陆点,并让我们能够“先知后知”。
6.3 带有私人电视选项的私人 A/G 通信............................................................................................. 6.3-1 6.4 CAPCOM 电话通信............................................................................................. 6.4-1 6.5 数字语音对讲系统 (DVIS) 改进型冷启动............................................................................................. 6.5-1 6.6 语音播放(已删除).................................................................................... 6.6-1 6.7 KSC 语音通信控制(已删除).................................................................... 6.7-1 6.8 PABX 拦截......................................................................................................... 6.8-1 6.9 语音通信标准......................................................................................................... 6.9-1 6.10 TDRS/GN 切换............................................................................................. 6.10-1 6.11 TDRS早期移交................................................................................ 6.11-1 6.12 在高倾斜度进入肯尼迪航天中心期间的 TDRS 移交..................................................................................... 6.12-1 6.13 NASCOM 优先事项............................................................................... 6.13-1 6.14 空对地语音管理....................................................................................... 6.14-1 6.15 地面语音 - 应急管理......................................................................................... 6.15-1 6.16 接入地面语音上行链路.................................................................................... 6.16-1 6.17 任务控制中心-莫斯科/任务控制中心-休斯顿(MCC-M/MCC-H)地面通信 - 应急管理......................................................... 6.17-1 6.18发射前 A/G 语音检查...................................................................................... 6.18-1 6.19 保留................................................................................................... 6.19-1 6.20 保留................................................................................................... 6.20-1 6.21 应急着陆点(CLS)通信......................................................................................................... 6.21-1 6.22 远程操作 - 将远程飞行控制器连接到数字语音对讲系统......................................................... 6.22-1
在采伐和道路设计中使用激光雷达地形的诱惑和陷阱 Finn Krogstad 和 Peter Schiess 的论文发表于 2004 年 6 月 13 日至 16 日在加拿大不列颠哥伦比亚省温哥华举行的 IUFRO 3.06 山地条件下的森林作业联合会议和第 12 届国际山地伐木会议。摘要 机载激光测高 (Lidar) 可以生成细节丰富、精度极高的地形图,即使在被森林冠层遮挡的地面上也是如此。详细的激光雷达地形可以识别可能的着陆位置、难以穿越的溪流、不稳定的土壤、难以穿越的边坡和有用的长凳。这些细节可以减少现场时间,指导道路设计走向更好的选择,并提高我们对成本估算的信心。然而,激光雷达测绘偶尔会失败,这些失败的表示方式将决定激光雷达的可靠性和道路设计价值。我们讨论了首次使用激光雷达测绘塔霍马州立森林的经验,该森林位于 Mt. 南部。雷尼尔山。这种详细的地形测绘用于森林作业设计,例如着陆点和道路位置,作为基于流域的收获和运输计划的一部分。基于激光雷达的办公室设计随后进行了现场验证。对于森林工程设计而言,此类 DEM 成功的关键在于能够(或缺乏)区分地面点覆盖充足或边缘的区域,从而导致优秀或错误的测绘细节。我们讨论了各种方法,这些方法可以识别地面点覆盖边缘的区域,从而形成测绘承包商应遵守的第一组激光雷达数据收集要求。观察树冠下的情况木材采伐和道路规划中经常出现的一个问题是,用于采伐的树木会遮挡必须堆放原木和修建道路的地面。规划中常用的地形图基于航拍照片,其中我们现在想要采伐的林分遮挡了我们必须规划的地面。因此,得到的地形图是树冠顶部的地图,带有假定树高的偏移。不幸的是,树冠并不完全贴合地面,在采伐和道路规划中可能至关重要的细微地形变化并未反映在最终的树冠顶部。地形通常包括土壤不稳定、岩石露头和不平坦的地形区域,这些区域可能会给采伐和道路建设带来困难。激光雷达的工作原理是拍摄数百万张树冠还会遮挡可作为方便着陆点和道路位置的天然土丘和长凳。因此,这些地形图只能作为设计的一般指南,操作的关键要素需要基于现场验证。机载激光地形扫描 (Lidar) 的最新发展使得即使在森林冠层下也可以进行详细的地形测绘。