将可再生能源集成到现代智能电网中,由于能源产生的可变性和不可预测性,提出了重大挑战。对可再生能源输出的准确实时预测对于确保网格稳定性,优化能量分布并最大程度地减少了能量浪费至关重要。本研究探讨了针对智能电网中实时可再生能源预测的可扩展监督学习算法的开发和应用。
锂离子电池(LIB)的健康评估通常依赖于持续的充电/放电协议,通常会忽略涉及电动汽车中普遍存在的动态电流轮廓的情况。LIB的常规健康指标也取决于测量数据的均匀性,从而限制了它们对不均匀条件的适应性。在这项研究中,提出了一种基于自我监督学习范式估算LIB健康的新型培训策略。一种多解决分析技术,即经验小波变换,用于分解频域中的非平稳电压信号。这允许去除健康评估模型的无效组件。变压器神经网络用作模型主链,损失函数旨在描述容量降解行为,假设在大多数操作条件下LIBS中的降解是不可避免且不可逆转的。结果表明,该模型可以通过分析从同一LIB单元的各个时间间隔分析电压和电流曲线的序列来学习老化特征。所提出的方法成功地应用于斯坦福大学LIB老化数据集,该数据集源自电动汽车实际驾驶配置文件。值得注意的是,这种方法在评估的健康指数和实际容量降解之间达到了平均相关系数为0.9,这表明其在捕获LIB健康降解方面的功效。这项研究强调了使用未标记的LIB数据训练深神经网络的可行性,提供了具有成本效益的手段并释放了测量信息的潜力。
这项工作是出于空间信息在HTR任务[25]中的相关性以及以下事实,据我们所知,它以前尚未进行过研究,并着重于适应HTR领域的此类方法。更确切地说,我们提出了两种替代方案,可以在HTR方案中使用这些SSL策略(见图1):(i)将HTR任务调整为原始SSL方法,即输入适应性,(ii)提出针对HTR任务特征的新型基于空间上下文的SSL方法,即适应。通过考虑多个参考HTR Corpora,将这些建议全面评估,并与该领域遵循的参考策略进行比较。获得的结果表明,与参考SSL方法相比,所提出的SSL策略提供了最先进的识别率,同时保持概念上的简单性。
一个人通常将信号表达式拟合到实验数据以估计模型参数。但是,某些生物物理模型中固有的不确定性使参数估计不稳定[22]。此外,准确的拟合并不一定证明基本的生物物理模型是合理的,并且估计的模型参数可能在生物物理上毫无意义[23,24]。由于数学并发症而排除了生物物理模型之类的微妙效果,例如神经突的起伏[11,20,25]。除了简化的几何模型带来的误差外,某些假设的有效性(例如GPA)仍然未知[23,26]。此外,几种信号表达式的有效性机制取决于微结构长度尺度[27]。体素可能表现出多长度尺度(例如,各种SOMA RADII),因此不同的有效性制度可以逐渐共存或逐渐出现[24],从而使全面的模型验证变得困难。
未标记的数据出现在许多域中,并且与流应用程序特别相关,即使数据丰富,标记的数据也很少见。要解决与此类数据相关的学习问题,人们可以忽略未标记的数据,而只专注于标记的数据(监督学习);使用标记的数据并尝试利用未标记的数据(半监督学习);或假设可以根据要求提供一些标签(主动学习)。第一种方法是最简单的,但是可用的标记数据量将限制预测性能。第二个依赖于查找和利用数据分布的基本特征。第三个取决于外部代理以及时提供所需的标签。本调查特别注意在半监督环境中利用未标记数据的方法。我们还讨论了延迟的标签问题,这会影响完全监督和半监督的方法。我们提出一个统一的问题设置,讨论学习保证和现有方法,解释相关问题设置之间的差异。最后,我们审查当前的基准测试实践,并提出改编以增强它们。
描述各种方法用于实时PCR(定量PCR或QPCR)数据的统计分析和图形表示。'rtpcr'负责基于多达两个参考基因的实时PCR数据的扩增效率计算,统计分析和图形表示。通过考虑放大效率值的考虑,“ RTPCR”是由Ganger等人描述的一般计算方法开发的。(2017)和Taylor等。(2019),涵盖了livak和pfaffl方法。基于实验条件,“ RTPCR”包装的功能使用t检验(用于具有两级因子的实验),方差分析(ANOVA),协方差分析(ANCOVA)分析(ANCOVA)或重复测量数据分析以计算到calcu- colcu- flta delta delta delta delta delta ct方法(delta cta)或dela dela dela dela(re)(re)(re)。该功能进一步提供了平均值的标准误差和置信度间,采用统计平均比较并具有重要意义。为了促进功能应用,使用了不同的数据集作为示例,并解释了输出。“ RT- PCR”软件包还使用各种控制参数提供条形图。“ rtpcr”包装是用户友好且易于使用的,并提供了用于分析实时PCR数据的适用资源。
抽象的对比表示学习已被证明是图像和视频的有效自我监督的学习方法。最成功的方法是基于噪声对比估计(NCE),并将实例的不同视图用作阳性,应与其他称为否定的实例形成对比,被称为噪声。但是,数据集中的几个实例是从相同的分布中汲取的,并共享基本的语义信息。良好的数据表示应包含实例之间的关系,语义相似性和差异性,即通过将所有负面因素视为噪声来损害对比学习。为了避免此问题,我们提出了一种新的对比度学习的表述,使用称为“相似性对比估计(SCE)”的实例之间的语义相似性。我们的训练目标是一个软的对比目标,它使阳性更接近,并估计根据其学到的相似性推动或提取负面实例的连续分布。我们在图像和视频表示学习方面均通过经验验证我们的方法。我们表明,SCE在ImageNet线性评估方案上的最低时期时代的较少时代的时期与最低的时期进行了竞争性,并且它概括为几个下游图像任务。我们还表明,SCE达到了预处理视频表示的最新结果,并且学习的表示形式可以推广到下游任务。源代码可用:https://github.com/juliendenize/eztorch。
描述实现了一种基于树木的方法,专门针对个性化医学应用。通过使用基因组和突变数据,“ ODT”有效地识别了针对个别患者概况量身定制的最佳药物推荐。“ ODT”算法构建了在每个节点上分叉的决定树,选择最相关的标记物(离散或连续)和相应的处理方法,从而确保了建议既具有个人化和统计上稳健的建议。这种迭代方法通过对治疗建议提出预定义的组大小来增强治疗性决策。此外,所产生的树木的简单性和解释性使医疗保健行业可以使用的方法。包括用于训练决策树的功能,对新样本或材料进行预测以及可视化所得树。有关该方法论的详细见解,请转移到Gimeno等。(2023)。