1949 年,戈莱(Golay)[1-4]发现了两种重要的纠错码。一种是二进制码,现用符号 1[24,12,8] 表示,由 2 12 = 4096 个 24 个字符(每个字符为 0 或 1)的码字组成,码字之间的最小距离为 2/8;另一种是三元码,用符号 [12,6,6] 表示,由 3 6 = 729 个 12 个字符(每个字符为 0、1 或 2)的码字组成,码字之间的最小距离为 6。3 在被发现后的几十年里,这些代码推动了编码理论和数学的重大进步。在编码理论中,戈莱码是唯一在有限域上可以纠正码字中多个错误的完美代码。 4 在数学中,二进制 Golay 码导致了 24 维 Leech 格子的发现 [5],这种格子提供了该维度上最密集的全同球体堆积 [6](已知的其他此类堆积的唯一维度是 8)。此外,在群论中,正如 Preskill [4] 所说,Golay 码启动了一系列事件,这些事件导致了上个世纪后期对有限群(特别是“零散”群)的完整分类。量子计算的出现以及由此产生的对量子纠错的兴趣,重新引起了人们对古典密码学的兴趣,因为人们意识到后者的许多结果可以改编并用于
摘要:纠缠态的分布是许多量子信息处理协议中至关重要的关键任务。一种常用的量子态分布设置设想在一个位置创建状态,然后通过一些量子通道将其发送到(可能不同的)远程接收器。虽然毫无疑问,也许直观地预料到,纠缠量子态的分布效率低于乘积态,但尚未对这种低效率(即纠缠态和分解态的量子态传输保真度之间的差异)进行彻底的量化。为此,在这项工作中,我们考虑了 n 个独立的振幅衰减通道,它们并行作用,即每个通道局部作用于 n 个量子比特状态的一部分。我们推导出了在初始状态存在纠缠的情况下,最多四个量子比特的乘积态保真度降低的精确分析结果。有趣的是,我们发现真正的多部分纠缠对保真度的影响比双量子比特纠缠更大。我们的结果暗示了这样一个事实:对于更大的 n 量子比特状态,产品状态和纠缠状态之间的平均保真度差异会随着单量子比特保真度的增加而增加,从而使后者成为不太值得信赖的品质因数。
相反,无法通过不同的用户 PIN 用同一个 PIN 码键盘控制不同的锁定设备,因为信号会同时发送到所有锁定设备。这不能确保与输入的用户 PIN 相匹配的锁定设备被寻址。在这种情况下,尽管输入了正确的用户 PIN,锁定设备也不会运行。
其中 r 是 2 n 维实向量,H 是对称矩阵,称为哈密顿矩阵,不要与哈密顿算子 ˆ H 混淆。矩阵 H 可以假定为对称的,因为其中的任何反对称分量都会增加一个与恒等算子成比例的项(因为 CCR),因此相当于在哈密顿量上增加一个常数。当高阶项不显眼且可忽略不计时,通过二次哈密顿量来建模量子动力学非常常见,量子光场通常就是这种情况。此外,二次哈密顿量在其他实验中也代表了一致的近似,例如离子阱、光机械系统、纳米机械振荡器和许多其他系统。对于相互作用,量子振荡器的“自由”局部哈密顿量 ˆ x 2 + ˆ p 2 (以重新缩放的单位表示)显然是二次的。任何二次汉密尔顿量的对角化都是一个相当简单的数学程序。因为,正如我们将看到的,这种对角化依赖于识别彼此分离的自由度,所以由二次汉密尔顿量控制的系统在量子场论文献中被称为“准自由”。尽管它们的动力学很容易解决,但这样的系统仍然为量子信息理论提供了非常丰富的场景,其中用于分析二次汉密尔顿量的标准方法成为强大的盟友。
稳定器框架的性质要求稳定器之间能够相互交换,从而强制类似的经典加法码满足对偶包含约束。Calderbank、Shor 和 Steane (CSS) 进一步提出了一种从两个满足对偶包含约束的经典码构造量子码(也称为 CSS 码)的方法 [3][4]。由于 CSS 码的性质取决于相应的已充分研究的经典码,因此 CSS 码的分析很简单。Brun 等人通过引入在发射机和接收机之间利用预共享纠缠态的概念,进一步从不满足对偶包含约束的经典码构造量子码(也称为纠缠辅助 (EA) 码)[5]。假设纠缠态的接收端量子比特是无噪声的。 EA 码的构造依赖于从一组非交换算子构造阿贝尔群。此类码可提供比无辅助情况更好的纠错能力,对 EA 通信很有用。EA CSS 码由两个不满足对偶包含准则的经典码构造而成 [6] [7]。在多年来研究的各种经典码中,Reed-Muller (RM) 码已用于卫星和深空通信,而极化码(RM 码的泛化)则用于 5G 标准的控制信道 [8]。它们的代数性质使它们不仅可局部测试,而且可局部解码和列表解码 [9] [10]。RM 码具有软判决解码器,可利用软信息获得更好的性能。 [11] 经典 RM 码和量子 RM 码分别可以达到经典和量子擦除信道的容量 [12] [13]。二进制
arXiv:2206.06557, SG , C.A.Pattison, E. Tang arXiv:2306.12470, SG , E. Tang, L. Caha, S.H.Choe,Z.他,A.库比卡