LIS的设计可以分为三种一般策略:湿滑的液体注入的多孔表面(SLIPS),[2,4,7]有组织物,[3,6,19,20]和聚合物刷。[21,22]滑片依赖于两个主要因素:通过匹配表面化学,并引入表面粗糙度来最大程度地提高润滑剂对表面的亲和力,从而增强了毛细管对毛细管对底物的粘附。[5]在创建此类滑动系统的技术的开发中,已经有了巨大的研究。[5,13,23–27]典型地,该设计需要多个步骤来引入表面粗糙度,表面功能化和润滑剂。到目前为止,只有很少的研究表明了单步方法中的单块制造,例如,通过电喷雾既有透明质硅烷和全氟popotherether。[28]
摘要:在这项工作中,使用硅烷偶联剂(IPTES)和聚合物块(ITP)成功合成了一种新型功能化的氧化石墨烯成核核定剂(GITP),以有效地改善PET的结晶和机械性能。为了全面研究官能化的GO对PET性质的影响,通过使用熔体混合方法将GITP引入PET矩阵来制备PET/GITP纳米复合材料。结果表明,与纯PET相比,PET/GITP具有更好的热稳定性和结晶性能,从而将熔化温度从244.1℃提高到257.1°C,并将其结晶度从595 s降低到201 s。此外,PET/GITP纳米复合材料的结晶温度从185.1℃至207.5℃升高,拉伸强度从50.69 MPa提高到66.8 MPa。本研究为官能化的GO提供了一种有效的策略,作为一种成核剂,可以改善PET聚酯的结晶和机械性能。
沉积技术在TOPCON过程中起关键作用。最初通过使用LPCVD来沉积多晶硅的早期采用者最初在半导体行业的脚步中遵循。但是,这种方法遭受了前面多硅层的不希望沉积,称为环绕式,必须主动去除。这不仅会随着涉及的步骤增加而增加成本,而且导致产量下降。鉴于其具有创新的倾向,PV行业开始使用经过调整的水平载荷LPCVD配置,以使环绕型保持在限制范围内。我们还看到了其他几种同时开发的沉积技术。今天,几乎所有在PV中已知的沉积技术,包括PECVD,PVD和Peald,都有一个调整的版本,用于在TopCon中应用。这些工具旨在覆盖后表面工程的所有方面 - 应用氧化隧道的应用,多硅烷沉积和随后的掺杂。更重要的是,他们已经能够处理高达210毫米的较大晶片(G12)。
应用,包括纳米光刻,高性能添加剂和生物医学中的递送剂。[6]基于无机元素的BCPS合成也是可以引入的互补功能的重大兴趣,例如等离子体蚀刻,氧化还原活性和有用的前刻度。迄今为止,研究主要仅限于一小组聚合物,例如多硅氧烷[7-9]和多氟乙烯基硅烷[10,11],此外还有其他几种含磷磷酸化的系统,包括聚磷酸的系统[12]和多磷酸[12]和聚磷酸,[13,14](13,14](Sche-me Me 1a)。polyphosphinoboranes [H 2 BPRH] N(r =芳基,烷基,方案1b),由于与聚烯的价值 - 以异构体的关系而引起了最近的特别关注。除了其充当光刻的潜力[15]对PB陶瓷材料的前体,[16,17]水力表面,[18]可溶胀的凝胶,[19]和阻燃剂。[20]
单畴(永久取向的“单晶”)液晶驱动通常是获得人造软材料类似肌肉驱动的关键方案。[1–3] 然而,由于聚合物弹性体的各向同性,这种物理上偏置的分子结构的需求给经典的合成聚合物弹性体带来了技术挑战。1991 年,Finkelmann 等人 [8] 引入了一种两阶段氢化硅烷化方法,并报道了第一个成功的具有独立驱动功能的“向列液晶单晶弹性体”。在这种方法中,其本质一直是随后二十年制造单畴液晶驱动的首选方案,对轻度交联的凝胶施加单轴机械延伸,以建立内部单轴取向场,然后进行进一步(第二阶段)固化以永久固定该取向。然而,这种方法在实践中非常困难,因为半固化凝胶本身具有机械脆弱性,需要充分拉伸才能实现取向。这降低了液晶元件在不断扩展的变形和驱动应用中的可用性。为了实现更复杂的液晶取向模式并规避分阶段固化问题,人们开发了其他基于外部场的技术,特别是表面取向 [9–12] 和动态键交换。[13–20] 基板的多样化像素定义表面使驱动模式的扩展成为可能,而不仅仅是简单的收缩-伸展。尽管进行了功能化,但材料的规模仍然受到特定基板的限制,并且表面穿透液晶元件本体的深度有限,使得该方法在技术上不足以进行大规模制造。因此,对于通用且灵活的液晶元件制造,机械拉伸仍然是生产多功能功能形式的单畴液晶元件的最简单策略。例如,鉴于聚合物纤维加工方法的成熟,这在编织纤维中尤为突出。人们希望有除氢化硅烷化之外的新化学方法,以便进行稳健的反应和方便的机械排列方式。近年来,二丙烯酸酯反应性液晶原(如 RM257 和 RM82)的商业化供应已成为 LCE 领域的强大推动力,考虑到涉及二丙烯酸酯的一系列良性反应,它提供了一种令人满意的替代方案。特别是,
Wacker是一家全球公司,拥有无数日常用品中最先进的特种化学产品,从瓷砖粘合剂到太阳能电池不等。我们的投资组合包括100多个国家提供的3,200多种产品,总收入为2023年6,402.2 mio€。我们的大多数产品都是基于主要原材料硅金属(冶金级),乙烯,甲醇,乙酸乙烯酯单体(VAM)和特殊的硅烷和Silanes&Siloxanes。我们的主要客户是化学,结构,电气,电子和光伏领域。Wacker的集成全球生产系统由27个生产地点组成,共有16,378名员工。十个地点在欧洲,八个在美洲和亚洲九个地点。该集团的主要生产地点是伯格豪森(德国)。Wacker的主要竞争优势是其位于伯格豪森,纽约市,查尔斯顿和Zhangjiagang的主要生产地点高度集成的材料循环。综合生产的基本原理是将副产品从一个阶段用作生产其他产品的起始材料。在封闭环中将其回收的辅助设备(例如硅烷)被回收。在其他化学过程中使用了一个过程中的废热。集成的生产削减了能源和资源消耗,不止可以改善原材料的使用,并使环境保护成为生产过程的内在组成部分。总的来说,我们每个部门的产品和服务范围在2023年保持不变。在几个应用领域,我们扩展了产品组合。Wacker Silicones是业务部门拥有最广泛产品的业务部门。两种原材料 - 硅金属和甲醇 - 是生产七个产品组的2800多种硅树脂产品的基础:硅烷,硅氧烷,硅胶液,硅酮乳液,硅胶乳液,硅树脂弹性剂,硅树脂和硅树脂。有机硅具有许多化学,机械和触觉特性,可以经过精确调整,并且一次又一次地合并。没有其他合成材料提供这种多功能性和应用范围。有机硅非常耐用,耐心,耐水和抗紫外线。它们在日常应用中与开发创新的新技术一样。Wacker聚合物使最先进的粘合剂和聚合物添加剂(例如可分配聚合物粉末和分散剂)。它们用于多种工业应用或基本化学物质。聚合物粘合剂的主要客户是建筑行业。其他客户包括油漆,涂料,纸和粘合剂行业。Wacker Biosolutions为精细化学品提供定制的生物技术和目录产品。产品包括药物蛋白,疫苗,环糊精,半胱氨酸,乙酸聚乙酸聚氯乙酸固体树脂(用于牙胶)和乙酰丙酮。该部门着重于针对增长领域的特定客户解决方案,例如药物,食品添加剂和农业化学物质。Wacker多硅氧基菌为半导体和太阳能扇区产生高斑多核心。我们的公司气候战略解决了温室气体排放的主要来源。Wackers CO2E排放以电力为主,并购买了用于生产我们产品的原材料。由于我们的工艺被电气超过75%,因此我们对电力的需求约为每年6 TWH,由我们自己的发电厂产生约20%。因此,我们的范围2排放以及范围1的主要部分是由购买或自我生成的能量产生的。在挪威的Wacker站点Holla产生了我们对硅金属需求的大约三分之一。作为硅金属的生产过程,通过使用碳作为还原剂将石英降低至硅的生产过程,此生产过程也对我们的范围1发射产生了重大贡献。通过减少能源生产和硅
湿度是多晶硅微机械摩擦表面磨损的一个重要因素。我们证明,非常低的湿度会导致非常高的磨损,而可靠性不会发生显著变化。我们表明,产生的磨损碎片的量是空气环境中湿度的函数。随着湿度降低,产生的磨损碎片增加。对于较高的湿度水平,表面氢氧化物的形成可能起到润滑剂的作用。主要故障机制已被确定为磨损。磨损碎片已被确定为非晶态氧化硅。在低湿度水平下观察到的大碎片(长度约为 1 微米)也是非晶态氧化硅。使用透射电子显微镜 (TEM),我们观察到磨损碎片形成球形和棒状。我们比较了两种表面处理工艺:氟化硅烷链 (FTS) 和超临界 CO 2 干燥 (SCCO 2 )。在两种湿度水平下,使用 SCCO 2 工艺的微型发动机的可靠性低于使用 FTS 工艺发布的微型发动机。
摘要剑麻纤维和基于生物的环氧树脂的组合具有良好的潜力,可提供具有改进或同等机械性能的环保生物复合材料。然而,由于键在化学结构(极性)函数组中的电荷在原子上的不同分布引起的两种材料之间的较差相互作用需要通过各种技术对组成部分的一个表面进行修改。本文讨论了有关多种治疗方法的可用文献,以通过实现有利的润湿性,机械互锁以及通过化学键合的改善相互作用来改善剑麻纤维和热套环氧矩阵之间的粘附。表明,在NaOH溶液中洗涤纤维,然后冲洗和干燥是普遍的化学处理。通过NAOH处理,研究人员观察到了清洁纤维,这促进了环氧基质的更好粘附。偶联剂(例如硅烷处理)表现出对纤维吸收的抗性的提高。热处理通过增加纤维素的结晶度,从而影响纤维的形态。还观察到,纤维矩阵粘附的改善对复合材料的冲击强度有不利影响。
摘要:分散相尺寸小至几十纳米的有机/无机杂化复合材料引起了人们的极大兴趣。本文表明,可以通过“原位”溶胶-凝胶法从两种前体开始获得二氧化硅含量为 6 wt % 的二氧化硅/环氧纳米复合材料:四乙酯正硅酸盐 (TEOS) 和 3-氨基丙基三乙氧基硅烷 (APTES)。APTES 还起到偶联剂的作用。使用先进技术(明场高分辨率透射电子显微镜、HRTEM 以及通过多范围设备 Ganesha 300 XL+ 执行的小角和广角组合 X 射线散射 (SAXS/WAXS))使我们能够证明纳米粒子的多片结构,而不是通常通过溶胶-凝胶路线获得的凝胶结构。一种以新的方式结合溶胶-凝胶化学、乳液形成和奥斯特瓦尔德熟化方面的充分评估知识的机制使我们能够解释观察到的层状纳米颗粒的形成。■ 简介
量子数及其意义。s,p,d,f块元素,周期表的长形式。详细讨论了元素的以下属性,参考了标准普尔群。有效的核电,屏蔽或筛选效果,Slater规则,周期表中有效核电的变化。一般特征,离子类型,尺寸效应,半径比规则及其局限性。晶体中离子的包装。带有派生和格子能量的出生时方程。Madelung Constant,Born-Haber循环及其应用,溶剂化能量。刘易斯结构,价键理论,分子轨道理论。正式电荷,价壳电子对排斥理论(VSEPR),氧化还原方程,标准电极势及其应用于无机反应。bronsted-lowry酸碱反应,溶剂化质子,酸的相对强度,酸碱反应的相对强度,水平溶剂,刘易斯酸基概念,刘易斯酸的分类,硬酸和软酸和碱基(HSAB)的应用。惰性成对效应,对角线关系同种异体和串联。S和P块元素的复杂形成趋势。 研究化合物,重点是结构,粘结,制备,性质和用途。 硼酸和硼酸盐,氮化硼,硼氢化物(二苯甲酸酯)和石墨化合物,氮,磷和氯的硅烷,氧化物,氧化物和亚酸。 硫,间外化合物,聚盐离子,伪卤素和卤素基本特性的过氧酸。 物理化学S和P块元素的复杂形成趋势。研究化合物,重点是结构,粘结,制备,性质和用途。硼酸和硼酸盐,氮化硼,硼氢化物(二苯甲酸酯)和石墨化合物,氮,磷和氯的硅烷,氧化物,氧化物和亚酸。硫,间外化合物,聚盐离子,伪卤素和卤素基本特性的过氧酸。物理化学Werner的理论,价键理论(内部和外轨道复合物),电中心原理和背部键合。晶体场理论,10 dq(ΔO),弱和强场中的CFSE测量,配对能量,影响10 dq(ΔO,ΔT)的因素。八面体与四面体配位,八面体几何学jahn-teller定理的四方畸变,方形平面几何形状。配体领域和MO理论的定性方面。