摘要 在混合溶剂(水-丁醇和水-环己醇)存在下,利用醋酸铜和硫脲研究了硫化铜(CuS)的结构、成分、电气和发光特性。硫化铜样品的 X 射线衍射 (XRD) 图案显示其六方结构,这是各种混合溶剂的结果。通过使用能量色散 X 射线 (EDX) 和傅里叶变换红外 (FT-IR) 检查,确定了键和原子量百分比。使用扫描电子显微镜 (SEM) 发现水-丁醇和水-环己醇中的硫化铜颗粒形态分别为棒状和片状。使用光带能量曲线和紫外-可见光吸收光谱确定了硫化铜纳米结构的带隙能量。硫空位缺陷是 PL 光谱中出现的紫外和可见光发射带的原因。根据 CV 研究,水-环己醇辅助的硫化铜样品的电化学特性优于水-丁醇辅助的硫化铜样品。根据催化剂的效率,计算了混合溶剂辅助的硫化铜样品中坎戈红 (CR) 染料降解的比例。引言与环境问题、危险废物和有毒水污染物相关的硫化铜受到了广泛关注。有机染料对纺织和其他行业的重要性也非常重要。与传统方法相比,催化方法具有多种优势,包括氧化速度更快和不产生多环产物。由于半导体材料吸收光,带隙能量等于或大于,这可能导致自由基氧化系统表面。但如今,硫化铜因其与能量存储和生物应用(包括抗菌和抗癌治疗)的联系而成为主要研究对象。硫族化合物纳米结构半导体,包括 ZnS、CdS、NiS、CoS 和 CuS,可用于气体传感器、LED、光伏电池、光催化和其他应用。CuS 纳米结构是硫族化合物之一,是 p 型半导体材料,由于其在环境温度下的带隙低至 2.2 eV,因此非常有利于光热、光电应用。这是由于光吸收过程中光子原子分子与光吸收之间的相互作用。具有各种形态的过渡金属氧化物作为光电材料的开发引起了人们的新兴趣,最近发现的一类具有有趣光物理特性的纳米材料的报道正在促进
固体中的多态性(及其扩展形式——伪多态性)在矿物学、晶体学、化学/生物化学、材料科学和制药工业中普遍存在。尽管控制(伪)多态性困难,但实现特定的(伪)多态性相和相关的边界结构是提高材料在能量转换和机电应用方面性能的有效途径。本文将伪多态相 (PP) 概念通过 CuBr 2 掺杂应用于热电铜硫化物 Cu 2- x S (x ≤ 0.25)。在 Cu 1.8 S + 3 wt% CuBr 2 中,在 773 K 时获得了 1.25 的峰值 ZT 值,比原始 Cu 1.8 S 样品高 2.3 倍。原子分辨率扫描透射电子显微镜证实了原始 Cu 1.8 S 低辉绿岩转变为 PP 工程化高辉绿岩,以及不同 PP 之间形成 (半) 相干界面,这有望增强声子散射。结果表明,PP 工程是提高 Cu-S 化合物热电性能的有效方法。预计它在其他材料中也会有用。