近年来,由于能源短缺和环境污染,低成本,高能量密度和环保特征的锂硫电池(LSB)引起了广泛的关注。然而,由锂多硫化物(Lips)引起的班车效应大大降低了LSB的cy效和寿命。为了解决此问题,我们通过一步热液方法设计了一个CO 3 O 4 -RGO复合材料,该方法用于修改聚丙烯(PP)分离器。CO 3 O 4 -RGO复合材料具有较高的电子电导率和吸附性能,可提供电子传输的通道并有效抑制嘴唇的班车。用CO 3 O 4 -RGO-PP分离器组装的锂硫电池具有令人满意的特定能力。在0.1 c时,第一个散落能力达到1365.8 mAh·g -1,并且在100个周期后,放电能力保持在1243.9 mAh·g -1。在0.5°C时350个循环后,放电能力为1073.9 mAh·g -1,每个周期的平均容量衰减率为0.0338%。这些结果表明CO 3 O 4 -RGO- PP分离器将在高性能LSB中具有良好的应用前景。
微生物,动物和植物中的代谢途径表现出各种关系。基于微生物硫代谢,本文总结了微生物,动物和植物中硫的四个主要代谢途径,并强调了相似性,差异和关系。微生物是生物硫循环的主要驱动力,参与硫的所有主要代谢途径。微生物通过微生物减少了硫磺硫,可减少甲烷在环境中的挥发。微生物或植物的同化硫还原性的动物有机硫来源,而动植物则缺乏异化或同化硫还原的功能。硫氧化发生在所有三种生物体中,具有相似的途径,其中硫转移酶多样化氧化产物。植物中的硫矿化尚不清楚,但是动物或微生物的矿化使植物中的硫硫底物可促进其他无机硫底物。 在本质上,基于硫代谢的生态关系,例如肠道微生物与宿主动物之间的关系,根际微生物与植物根,衰减的动物和植物的微生物矿化,以及微生物氧化的微生物矿化,硫磺的硫化和减少,显着增强了硫磺的硫磺含量。硫矿化尚不清楚,但是动物或微生物的矿化使植物中的硫硫底物可促进其他无机硫底物。在本质上,基于硫代谢的生态关系,例如肠道微生物与宿主动物之间的关系,根际微生物与植物根,衰减的动物和植物的微生物矿化,以及微生物氧化的微生物矿化,硫磺的硫化和减少,显着增强了硫磺的硫磺含量。
摘要:最近,人们对使用各种“催化剂”的兴趣日益浓厚,以进一步丰富逆硫化反应的基质范围。虽然关于这些催化剂的作用机理已经有了若干提案,但是这些混合物中硫的形态仍然难以捉摸。作为了解这些催化剂何时以及是否适用的关键要素,我们试图通过尝试表征硫的形态来阐明二硫代氨基甲酸盐物质在逆硫化反应中的作用。无论是否含有金属二硫代氨基甲酸盐、二乙基二硫代氨基甲酸钾 (K-DTC),含有不同官能团与硫的各种基质的反应效率都表明形成了快速波动的硫形态,最重要的是,存在阴离子硫。最后,根据我们的研究结果,提出了一些关于使用二硫代氨基甲酸盐催化剂的最佳实践的建议。
抽象目的:与植入物相关的感染代表了导致发病率和死亡率增加的重要并发症。确定引起感染的微生物剂对于成功治疗至关重要。尽管周围关节感染(PJIS)随着时间的推移而发生的发生率,但尚无100%灵敏度的诊断测试来准确识别这些感染。本研究的目的是确定将超声处理与Dithiothreitol(DTT)相结合是否提高了诊断植入物相关感染的准确性和敏感性。方法:具体来说,本研究包括30名因怀疑感染而因植入物去除的患者。植入物分为两个段:使用超声处理方法处理一个段,另一种是通过组合DTT和超声处理来处理的。结果:对于合并组而言,平均值为81.17 +/- 67.53 cfu/ml,对于组合组,平均值为109.7 +/- 62.78 cfu/ml。结论:我们的研究结果表明,DTT和超声处理的组合增加了菌落数量约为28.53 CFU/ML,这增强了检测到骨科植入物相关感染的可能性。
对形成碳键的新方法的探索,导致结构新颖的桥接化合物的合成对科学界而言至关重要。许多桥接化合物是众所周知的天然产物和生物活性支架的部分结构,并且也是许多反应中的剂量[1](图1)。桥接分子的结构唯一性,例如它们的设计,异常对齐和诱人的化学反应,具有较小的桥梁群体鼓励我们检查其独特的有机,猜想和光谱研究[2]。设计一种连贯的策略来访问桥接化合物的综合策略的令人震惊的综合挑战,该化合物具有非保障的热力学稳定性,在合成化学家中产生了好奇心[3]。在桥位的杂原位的紧张的杂循环部分的合成是一项迷人的合成工作,由于兴高采烈以及许多有用的特性,与碳环糖化合物相比,由于兴高采烈以及许多有用的特性,它一直在获得大量的cur现利息[4]。在1928年,奥托·迪尔斯(Otto Diels)教授和他的学生库尔特·奥尔德(Kurt Alder)报告了关于合成的[4Þ2]环加成反应的开创性工作
磺基序已被广泛地嵌入在药物分子,1个农产品,2和功能材料中。3图1,例如,显示了由FDA批准的药物的含硫分子的取样。1由于磺酰基群的显着重要性,其构造的合成策略的发展引起了人们的关注。4从经典中,磺基衍生物是由具有强氧化剂的相应硫化物的氧化制备的,这可能导致兼容兼容的问题(方案1A)。5直接SO 2插入策略6构成了合成磺基衍生物的直接方法;但是,因此2气是有毒的,不容易处理。近年来,使用SO替代物(方案1b)7,例如Dabso,8元甲硫酸盐,9和Sogen 10。尽管这些方法在各种过程中取得了成功,但由于这些盐的溶解性和/或吸湿性问题,仍然存在与使用这些盐有关的缺点。硫酸及其盐已成为用于构建含有磺基产品的磺酰基试剂,11,但它们的制备和纯化限制了其应用。与磺酸制剂的众多文献相反,硫酸盐的原位产生和/或功能化已被较少注意作为进入磺酰基化合物的替代途径。
attr-ca¼经甲状腺素蛋白心脏淀粉样变性; AV¼心房; CMR¼心血管磁共振; E/E/E0¼E -WAVE/E 0 -WAVE比率; EGFR¼估计的肾小球效果率; HF¼心力衰竭; HFPEF¼心力衰竭,保留了射血分数; HS¼高灵敏度; IVS¼室内隔膜;舒张期IVSD¼介入隔膜; la¼离开房屋; lbbb¼左束分支块; LGE¼晚期增强; LV¼左心; lvedd¼左心室末端直径; LVEF¼左心室射血分数; NT-Probnp¼n末端促脑脂肪肽; pwt¼后壁厚度; rbbb¼右束分支块; Tapse¼三尖环形平面收缩期偏移。
摘要经硫代蛋白(TTR)是一种在血液和脑脊液中发现的本质四聚甲状腺素转运蛋白,其错误折叠和聚集会导致经胆囊素淀粉样变性。将小分子tafamidis(Vyndaqel/vyndamax)鉴定为天然TTR倍数的有效稳定剂,并且这种聚合抑制剂是用于治疗TTR淀粉样蛋白病的治疗的监管机构批准的。尽管对TTR进行了50年的结构研究以及基于结构的药物设计的胜利,但仍有明显的结构信息可用于了解配体结合变构和淀粉样蛋白生成的TTR展开中间体。,我们使用单粒子冷冻电子显微镜(冷冻EM)研究了一个55千达尔顿四聚体的构象形态,在一个或两个配体的情况下,揭示了四腔体系结构中固有的不对称性,并且先前未观察到的构象状态。这些发现提供了对负合作配体结合和负责TTR淀粉样生成的结构途径的关键机理见解。这项研究强调了冷冻EM提供对蛋白质结构的新见解的能力,这些蛋白质结构在历史上被认为太小而无法可视化,无法识别由晶体晶格的构造所抑制的药理靶标,从而在基于结构的药物设计中开放了未知领域。
近年来,在高性能电池的开发中已经取得了巨大进步。大部分开发工作都集中在基于锂的电池上。引起锂兴趣的原因是它具有电动系列中金属的最高电位。随之而来的是,基于锂的电化学伴侣的理论能量密度高于其他夫妻。由于在工业和政府实验室中进行的研究和开发工作的结果,现在在实用硬件中实现了基于锂的电池的潜在好处。锂 - 硫和锂二夫妇正在开发用于次级(可充电)电池施用以及硫硫代氯化锂,硫硫硫氧化锂和五氧化锂五氧化氢锂是针对原始(非反射)电池供电的原始(非雷神)开发的。
锂硫电池 (LSB) 是后 LIBs 技术最有前途的候选者之一。[10–12] 在 LSB 中,通过硫和锂之间的多电子反应可实现 1675 mAh g −1 的理论容量。放电过程中会出现两个不同的电压平台。在较高的电压平台(约 2.3 V)下,S 的最稳定的同素异形体 S 8 的环状结构被破坏,形成长链多硫化锂;一开始是 Li 2 S 8 ,然后进一步还原为 Li 2 S 6 和 Li 2 S 4 。在较低的电压平台(约 2.1 V),长链多硫化锂进一步还原为 Li 2 S 2 和 Li 2 S。[13,14] 除了理论容量高之外,地球上 S 的储量丰富、价格低廉以及环境友好等特性使得 LSB 比 LIB 更便宜。然而,LSB 的工业化进程中仍存在一些障碍。[15,16] 首先,S 和放电产物 Li 2 S 本质上都是绝缘的(≈ 5 × 10 − 30 S cm − 1)。电极材料的低电导率会影响电池的电化学性能,尤其是在高电流密度下。其次,充放电过程中体积变化大会导致安全性和稳定性问题。由于 S 和 Li 2 S 的密度差异,当 S 转移到 Li 2 S 时,体积变化将高达 75%。最后,臭名昭著的穿梭效应会进一步导致性能下降。充放电过程中形成的多硫化锂可溶于电解液。这些中间体在正极和负极之间穿梭,并通过公式(1)和(2)所示的化学反应或电化学反应与电极材料发生反应,导致锂负极的消耗和“死”硫的形成,最终导致库仑效率和稳定性降低。