简介 - 对超智材料的改造的兴趣不仅是由科学的古怪驱动的,而且是由于几种工业应用中的技术兴趣越来越多[1,2]。钻石据报道,维克(Vicker)的硬度(V H)为120 GPA,迄今为止所有已知材料的记录都持有记录,但其在高温下的化学反应性和高生产成本限制了其实际可用性。对当前替代方案的改进,例如立方-BN(C-BN)或Cubic-BC 2 N [3-5]和金属硼化物[6-8],它们也呈现出严重的限制问题,例如高综合价格或有限的硬度,都在强烈寻求。硼,碳,氮和氧及其化合物等元素的相图代表了一个理想的狩猎场,可以通过Ab-Initio方法来探索潜在的超级材料的晶体结构预测(CSP)和高通量(HT)屏幕(HT)屏幕,这是快速扩展物质研究的范围[2-15-15-15]。在本文中,将晶体结构预测(最小值)[16,17]和高吞吐量筛查技术结合在一起,与硼碳(B-C)相图相结合,我们发现了一个新的型亚稳态硼和硼含量的碳结构的新家族,并与这些杂种富含碳纤维相比。硼化物。[18]术语所建议的融合的硼苯融合可以看作是通过共价键相连的2D硼层的不同类型的堆叠,形成了3D散装结构。在以下内容中,讨论了超智融合的一般elastic和热力学特性与高压α-GA相结构相关,被认为是在160 GPA以上的硼中观察到的最有可能解释的候选者[19-21],FBS理想地代表了两个已知的硼结构家庭缺失的联系:2d Boron Monoo-and Boron-Mono-and Borayers和Boryers(Boryers(Boropheres)(boropheres)(boropheres)[22- bor bulk and bore)[22-2-2-2-2-2-2-2-2-2-2-2-2-2-4]二十面体单元,例如α,β和γ硼[23,25,26] FBS在环境条件下可稳定,但是我们的计算表明,从高压中进行淬火可以用来稳定一些最有竞争力的阶段。
在汽车组件制造中,随着作业材料组成和无燃烧的磨削要求的不断变化,对表面饰面的需求增加了,这又使磨削过程变得复杂了。高级材料,例如具有细粒粒和多孔产品的工程陶瓷磨料,对于专业的表面饰面要求越来越重要。这导致了工程磨料的使用显着转移,例如立方硼硼化物(CBN)和钻石磨料产品,对许多用于许多研磨应用的常规氧化铝磨料产品,例如曲轴,凸轮,凸轮,轴承,齿轮, 汽车和轴承行业正在不断寻求通过消除磨削阶段来简化其磨削操作,因为满足严格的表面粗糙度要求的需求通常会导致他们投资于其他流程。汽车和轴承行业正在不断寻求通过消除磨削阶段来简化其磨削操作,因为满足严格的表面粗糙度要求的需求通常会导致他们投资于其他流程。
由电催化总体水分割产生的氢,由氢进化反应(HE)和氧气进化反应(OER)组成,是一种有希望的绿色技术,用于未来的能量转换和存储。OER的动力学缓慢,这是多个电子传输和化学中间体的结果(即,ho*,o*和hoo*)充当水分分裂的瓶颈,并主导着这项技术的整体效率。1加快了OER的速度并使大规模的水分裂实用,地球丰富,高度和耐用的电催化材料是非常需要且急需的。近年来,过渡金属硼化物,碳化物,pnictides和辣椒剂,我们在这里将所有这些都称为“ TM X-ides”,已将大量注意作为可行的氧气演化电催化剂。2–9除某些特殊情况外(例如,fep,ni 3 se 2和ni 3 te 2),10–12大多数TM X-ZED在OER的电势下被自氧化成其TM氧化物/(氧)氢氧化物对应物。13–20作为新形成的TM氧化物/(氧)氢氧化物物种比
本研究采用放电等离子烧结 (SPS) 工艺和 WC/HfB 2 改性剂烧结 ZrB 2 -SiC 超高温陶瓷复合材料,烧结温度分别为 1850、1900、2000 和 2050˚C,烧结时间分别为 8 和 25 分钟。在 SPS 过程中,还使用冲头位移-时间和温度-时间测量图检查了复合材料的致密化行为。还基于 XRD、EDS 和 FESEM 方法进行了相和微观结构评估。研究了 SPS 参数对 ZrB 2 -SiC 基复合材料致密化的影响。在这种情况下,由于硼化物粉末的可烧结性低,直到施加压力才会发生位移。在 2050˚C、30 MPa 下保温 25 分钟,获得相对密度为 90% 的 ZrB 2 -SiC 基复合材料。该样品的致密化曲线呈典型的“S”形。最佳吸水率和表观孔隙率分别为 1.3% 和 6.7%。样品的最小和最大冲压位移分别为 2.2 毫米和 3.6 毫米。使用 WC/HfB 2 改性剂导致 WB 和 HfB 副产品的形成。
尽管YB 6和实验室6具有相同的晶体结构,原子价电子的形象和声子模式,但它们表现出截然不同的声子介导的超导性。yb 6低于8.4 K的超导导,使其成为已知硼化物的第二个最高临界温度,仅次于MGB 2。实验室6直到接近 - 绝对零温度(低于0.45 K)才能超导。尽管以前的研究已经量化了Yb 6的更高费米 - 水平(E F)状态和较高的电子 - Phonon耦合(EPC)的规范超导性描述(EF),但尚未全面评估该差异的根源。通过化学键合,我们确定灯笼中的低谎言,未占用的4F原子轨道是这些超导体之间的关键区别。这些轨道在YB 6中无法访问,与πB– B键杂交,并使能量的能量低于σB-B键,否则在E f时。这种频段的反转至关重要:我们显示的光学声子模式负责超导性,导致Yb 6的σ-轨道在重叠中发生巨大变化,但彼此弱于实验室6的π轨道。yb 6中的这些声子甚至访问电子状态的交叉,表明EPC强。在实验室6中未观察到这种交叉。最后,显示了一个超级电池(m k-点)会发生PEIERL-喜欢YB 6中的效果,从柔软的声音子和相同的电子 - 耦合的光学模式中引入了其他EPC。总体而言,我们发现实验室6和YB 6具有从根本上不同的超导性机制,尽管它们差不多 - 身份差。
烧结(DC)和两者使用原位反应的变体已成为产生相对密度以上相对密度的相纯UHTC的偏爱烧结方法。15–19对于IV组的烧结(0.65 <ρ相对<0.90)的中间阶段,据报道,据报道的激活能量范围为140至695 kJ/mol的Zrb 2,56至774 kJ/mol的TIB 2,以及96 kJ/mol的HFB 2。5,20–23总体而言,研究得出的结论是,尽管激活能的值应仅取决于致密化的机械性,但更细的初始粒径和增加的压力降低了激活能量。对于烧结的中间阶段,Lonergan报道说,晶界扩散是在2000℃低于2000℃的反应热的Zrb 2中的主要机制,其激活能为241 kj/mol,但晶状体扩散成为2000°C的主要机制,其激活能量为695 kJ/mol。21 Kalish研究了HFB 2的极端压力(800 MPa)下的致密性最后阶段的动力学,并报告了激活能为96 kJ/mol。kalish建议该机制可能是脱位流,因为激活能量足够低,但没有提供其他机械的证据。kalish最终得出结论,在HFB 2的致密阶段,HF的B或晶界扩散是HF的晶界扩散是主要机制。5从那时起,几项研究报告了硼化物中的脱位运动。Koval'Chenko得出结论,脱位运动受到金属sublattice中金属物种的自扩散的限制。2424–29 Koval'Chenko螺柱的钼和钨硼的致密动力学,并报道激活能量是压力的独立性,这表明脱位滑行过程。28 bhakhri估计了使用压痕实验的154±96 kJ/mol中ZRB 2中脱位运动的活化能,并假设汉堡矢量沿着<1 0 0 0 0>方向。
59. 第18届国际硼、硼化物及相关材料研讨会。材料,新泻,日本 09/2019 56. 研讨会:固体化学与物理和纳米科学的发展,筑波,日本 09/2019 55. 东京大学,先进材料科学系,东京,日本 09/2019 55. 材料研究学会(MRS),美国波士顿(会议主席) 07/2018 55. 戈登研究会议(GRC),固体化学,美国新罕布什尔州新伦敦 07/2018 54. 路易斯维尔大学,化学系,美国肯塔基州路易斯维尔 08/2018 53. 第二届世界化学会议和展览会,西班牙瓦伦西亚 07/2018 52. 第 15 届国际纳米科学与纳米技术会议,希腊塞萨洛尼基 07/2018 51. “热电学的现在和未来”研讨会,法国雷恩06/2018 50. 犹他大学,材料科学与工程,美国犹他州洛根 1 0/2017 49. 犹他州立大学,化学系,美国犹他州洛根 1 0/2017 48. 密歇根大学,材料科学与工程,美国密歇根州安娜堡 09/2017 47. 第 18 届硼,硼化物及其相关化合物国际研讨会材料科学与工程学院,弗莱堡,德国 09/2017 46. 德克萨斯 A&M 大学,化学系,德克萨斯州大学城,美国 09/2017 45. 休斯顿大学,化学系,德克萨斯州休斯顿,美国 09/2017 44. 德克萨斯大学里奥格兰德河谷分校,化学系,德克萨斯州爱丁堡,美国 09/2017 43. 南加州大学,化学系,加利福尼亚州洛杉矶,美国 09/2017 42. 加州大学长滩州立大学,化学系,美国加利福尼亚州 09/2017 41. 慕尼黑工业大学,化学系,德国 09/2017 40. 奥格斯堡大学,无机化学研究所,德国 09/2017 39. 达姆施塔特大学,无机化学研究所,德国 09/2017 38. BIT 世界智能材料大会,泰国曼谷 03/2017 37. 2016 年晶体学会议,美国德克萨斯州休斯顿(主题发言人) 10/2016 36. 材料科学与技术(MS&T'16),美国盐湖城 10/2016 35. 第四届国际化学键会议(ICCB),美国考艾岛 07/2016 34. 第 251 届 ACS 全国会议,美国圣地亚哥(会议主席) 02/2016 33. 加州大学洛杉矶分校,化学系,美国加利福尼亚州洛杉矶 03/2015 32. 佛罗里达州立大学佛罗里达分校,化学系,美国佛罗里达州塔拉哈西 02/2015 31. 密苏里大学科技学院,化学系,美国罗拉 02/2015 30. 加州大学戴维斯分校,化学系,美国加利福尼亚州普罗维登斯 01/2015 29. 布朗大学,化学系,美国罗德岛州普罗维登斯 12/2014 28. 乔治华盛顿大学,化学系,美国华盛顿特区 12/2014 27. 加州大学河滨分校,化学系,美国加利福尼亚州河滨市 11/2014 26. 德克萨斯大学阿灵顿分校,化学与生物化学系,美国德克萨斯州材料,美国檀香山 2014 年 9 月 24. 第二届国际化学键会议(ICCB),美国考艾岛 2014 年 7 月 23.巴塞罗那大学,无机化学系,西班牙 10/2013 22. 欧洲磁学研讨会(JEMS),Rhodos,希腊 08/2013 21. 第一届国际化学键会议(ICCB),美国考艾岛 07/2013 20. 世界先进材料大会,中国苏州(会议主席) 06/2013 19. 福建材料科学研究院,福州,中国 06/2013 18. 德国明斯特大学,无机化学研究所 04/2013 17. 斯图加特大学,无机化学研究所,德国 04/2013 16. 弗莱堡大学,无机化学研究所,德国 01/2013 15. 康奈尔大学,化学与化学生物学系,美国纽约州伊萨卡 07/2012 14.加州大学圣巴巴拉分校,化学与生物化学系,美国 07/2012 13. GRC 固态化学,新伦敦,新罕布什尔州,美国(受邀海报展示) 07/2012 12. 西北大学,化学系,美国 06/2012
1。V. I. Matkovich,硼和耐火硼(Springer,1977)。2。X. Luo等。,金属添加剂对热压tib 2的致密性行为的影响。浅金属,1151-1155(2009)。3。A.A. Shiriev,A。S。Mukasyan,“ SHS过程的热力学”中的“自我传播高温合成的百科全书”中。(Elsevier,2017年),pp。385-387。4。W. Tao等。(2009)400KA大型铝还原电池中热电耦合场的有限元分析。在2009年,世界非网格连接风能和能源会议(IEEE),第1-4页。5。X. Cao等。,添加Ni对钨二吡啶的无压烧结的影响。国际难治金属和硬材料杂志41,597-602(2013)。6。X. Cao等。(2011)高温电化学合成熔融盐的硼化物。高级材料研究(Trans Tech Publ),第463-466页。7。V. Yukhvid,SHS过程的修改。纯和应用化学64,977-988(1992)。8。C. Wang,X。Xue,X。Cao,H。Yang,BN添加对Tib 2- al复合材料的机械性能和微观结构的影响。东北大学杂志(自然科学),19(2012年)。 9。 W. Chao等。 ,一种制造Aln-Tib2复合陶瓷的新方法。 材料和制造过程28,953-956(2013)。 10。 11。东北大学杂志(自然科学),19(2012年)。9。W. Chao等。 ,一种制造Aln-Tib2复合陶瓷的新方法。 材料和制造过程28,953-956(2013)。 10。 11。W. Chao等。,一种制造Aln-Tib2复合陶瓷的新方法。材料和制造过程28,953-956(2013)。10。11。C. Wang,J。Zhang,X。X. Xue,X。Z. Cao(2013)通过真空金属浸润制造B-Ni-Al屏蔽材料。高级材料研究(Trans Tech Publ),第410-413页。P.中国非有产金属协会的交易17,S27-S31(2007)。12。X. Cao等。,来自氯化氯化物 - 尿素深共晶溶剂的SN涂层的电化学行为和电沉积。涂料10,1154(2020)。13。H. C. Yi,J。Moore,粉末 - 压缩材料的自传播高温(燃烧)合成(SHS)。材料科学杂志25,1159-1168(1990)。14。W. Zhang等。,CR含量对Cr – Ti – C系统的SHS反应的影响。合金和化合物杂志465,127-131(2008)。