由于低地球轨道和地球静止轨道的自然资源有限,空间碎片正成为当前和未来空间活动的威胁。照此速度,卫星发射数量的增加和空间碎片数量的增加将超过地球轨道的承载能力。因此,凯斯勒教授提出了一个理论,认为低地球轨道上的空间物体密度足以引发无法控制的连锁碰撞(Kessler & Cour-Palais,1978 年)。到目前为止,空间监视网络正在追踪 28,600 个碎片物体,估计大于 10 厘米的碎片物体数量为 34,000 个,1 厘米至 10 厘米之间的空间碎片物体数量为 900,000 个,大于 1 毫米至 1 厘米的空间碎片物体数量为 1.28 亿个(欧洲航天局,2021 年)。
这里介绍的两个项目都计划使用毫米波长雷达来探测毫米大小的空间碎片物体。将雷达放置在靠近物体的位置有两个好处。首先,由于返回功率与距离(R)之间存在R − 4 的关系,因此靠近物体可以获得更高的返回功率。这种关系意味着,尽管卫星雷达比地面雷达弱得多,但如果雷达足够靠近目标,则返回功率会更高。其次,由于雷达散射截面,从物体返回的雷达功率与λ − 2 成正比。因此,较短的波长(较高的频率)有利于探测这些小块的空间碎片。由于毫米波长会被地球大气层衰减,因此要探测它们,必须将它们放置在卫星上。
在包括美国跨机构,行业,私营部门,盟友和合作伙伴在内的广泛利益相关者社区进行合作。在空间变得越来越“拥挤,有争议和竞争力”的时候,保持太空域的使用的潜力增加。 3在奥巴马政府2011年的国家安全空间战略中首次创造了这一短语以来,对空间领域的担忧大大增加了。根据2023年的评估,“ 90个国家在太空中运作。2021年,全球太空经济的价值为4690亿美元,其他分析将增加到2030年的年收入超过1.25万亿美元,超过24,500卫星。。。预计将在未来10年(2022- 2031年)推出,其中70%将是商业化。” 4截至2024年6月,欧洲航天局已经确定了9,800个运行的卫星和40,500个空间碎片物体大于10厘米5但是,其他人指出,在未来十年内可能会发射更多的卫星。结果,太空基金会的预测可能被认为是地板,而不是可能
1 (a) 轨道发射尝试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 3 商业发射与政府发射 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 按所有者国家和类别发射的 2024 个有效载荷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 11 2014 年至 2024 年年底在轨碎片物体数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 12 2014 年至 2024 年年底在轨物体质量(吨) . . . . . . . . . . . . . . . . . . 26 13 2024 年轨道发射及发射相关地球轨道碎片数量 . . . . . . . . . . . . . . . . 31 14 2024 年不受控制的再入 . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 45 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 46 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 47 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 48 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 49 20 颗 2024 年发射的地球静止卫星,按经度排序 . . . . . . . . . . . . . . 50 21 GEO 卫星数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1 (a) 轨道发射尝试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 3 商业发射与政府发射 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 按所有者国家和类别发射的 2024 个有效载荷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 11 2014 年至 2024 年年底在轨碎片物体数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 12 2014 年至 2024 年年底在轨物体质量(吨) . . . . . . . . . . . . . . . . . . 26 13 2024 年轨道发射及发射相关地球轨道碎片数量 . . . . . . . . . . . . . . . . 31 14 2024 年不受控制的再入 . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 45 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 46 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 47 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 48 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 49 20 颗 2024 年发射的地球静止卫星,按经度排序 . . . . . . . . . . . . . . 50 21 GEO 卫星数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
摘要:电力空间推进是一项在不断增加的航天器上采用的技术。虽然其应用领域的当前重点是电信卫星和太空探索任务,但现在正在讨论一些新想法,这些想法走得更远,应用推进器羽流粒子流将动量传递给目标,例如空间碎片物体甚至小行星。在这些潜在场景中,推进器光束撞击远处的物体,随后改变它们的飞行路径。到目前为止尚未系统研究的一个方面是推进光束中的带电粒子与太空中存在的磁场的相互作用。这种相互作用可能导致粒子流偏转,从而影响瞄准策略。在本文中,介绍了与电力推进推进器羽流和磁场相互作用相关的基本考虑因素。针对这些问题,德国航空航天中心在哥廷根的电推进器高真空羽流测试设施(STG-ET)进行了实验,利用栅状离子推进器、RIT10/37 和亥姆霍兹线圈产生不同场强的磁场。可以检测到由类似地球磁场强度的磁场引起的 RIT 离子束的束偏转。
摘要:原则上,地面高功率激光器能够通过远程诱导激光烧蚀动量使任何类型的空间碎片物体脱离低地球轨道 (LEO)。然而,效率和操作安全性的评估取决于许多因素,例如大气限制或辐射过程中碎片解体的风险。我们分析了各种目标几何形状和尺寸的激光动量,并且首次在大规模模拟中将热约束纳入激光辐照配置中。使用相干耦合的 100 kJ 激光系统,波长为 1030 nm,脉冲持续时间为 5 ns,在优化的指向仰角范围内,脉冲频率应小于 10 Hz,以防止碎片熔化。对于机械完好无损的有效载荷或火箭体,重复率应该更低。尺寸在 10 到 40 厘米之间的小碎片可以通过大约 100 到 400 次正面照射来脱离轨道,而超过 2 米的物体通常需要超过 1000 次照射才能脱离轨道。因此,基于激光的碎片清除不能被视为处理最高风险大型碎片的主要太空可持续性措施,但它可以使用全球分布的激光站点的小型网络来修复大量小型碎片。
摘要 人类面临生存危机;太空垃圾有可能变成“塑料漂流岛”。大型星座 (LC) 系统计划在低地球轨道 (LEO) 上运行数万甚至数十万颗卫星,这对太空时代构成了不光彩的终结的威胁。无法机动的卫星无法避免碰撞。即使是可以机动的卫星也可能发生碰撞。LEO 卫星之间的碰撞往往会造成灾难性的后果,导致大量新的碎片物体散布在 LEO 高度。我们开发了一个模型来探索凯斯勒综合症时间对卫星数量、卫星大小和 LC 轨道的依赖关系。模拟表明:1) 小型卫星(<25 千克)的 LC 比中型(25 至 300 千克)或大型(>300 千克)卫星群安全得多;2) 如果部署中型或大型卫星的 LC,它们在较低轨道(例如 450 公里)比在 600 公里或 1,200 公里轨道)更安全。演示了轨道容量(可持续部署的卫星数量和类型)和临界点(在此临界点不再可能通过停止发射来避免凯斯勒综合症)概念。
1 (a) 轨道发射尝试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 3 商业发射与政府发射 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 按所有者国家和类别发射的 2023 有效载荷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 11 2014 年至 2023 年年底在轨碎片物体数量 . . . . . . . . . . . . . . . . . . . . . . . . . 25 12 2014 年至 2023 年年底在轨物体质量(吨) . . . . . . . . . . . . . . . . . . 26 13 2023 年轨道发射及发射相关地球轨道碎片数量 . . . . . . . . . . . . . . . . 32 14 2023 年不受控制的再入 . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 44 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 45 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 46 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 47 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 48 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 49 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 50 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 51 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 52 20 2023 年发射的地球静止卫星,按经度排序 . . . . . . . . . . . . . .53 21 GEO 数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... .... .... 56