多代理路径查找(MAPF)是在共享环境中发现无碰撞路径的问题,每个代理一个是每个代理的一个问题,同时最小化了旅行时间的总和。由于最佳地求解MAPF是NP-HARD,因此研究人员已经使用了副本且有效地求解MAPF的算法。基于优先级的搜索(PBS)是为此目的的领先算法。它一次找到一个单个代理的路径,并通过将优先级分配给碰撞代理并在其搜索过程中重新确定其路径来解决碰撞。但是,对于具有高密度的代理和障碍物的MAPF实例,PBS变得无效。因此,我们介绍了贪婪的PBS(GPB),该PBS(GPBS)使用贪婪的策略来通过最大程度地减少代理之间的碰撞数量来加快PBS。然后,我们提出了进一步加速GPB的技术,即部分扩展,目标推理,诱导的约束和软重新启动。我们表明,具有所有这些改进的GPB的成功率高于1分钟的运行时间限制的最先进的次优算法,尤其是对于具有小地图和密集障碍的MAPF实例。
预计高亮度大型强子对撞机 (HL-LHC) 实验的跟踪探测器所需的计算复杂度和数据规模将空前增加。虽然目前使用的基于卡尔曼滤波器的算法在同时发生的碰撞数量、占用率和可扩展性(比二次方差)的模糊性方面已达到极限,但人们正在探索各种用于粒子轨迹重建的机器学习方法。HEP.TrkX 之前使用 TrackML 数据集证明,图形神经网络通过将事件处理为连接轨迹测量的图形,可以通过将组合背景减少到可管理的数量并扩展到计算上合理的大小来提供有希望的解决方案。在之前的工作中,我们展示了量子计算对图形神经网络进行粒子轨迹重建的首次尝试。我们旨在利用量子计算的能力同时评估大量状态,从而有效地搜索大型参数空间。作为本文的下一步,我们提出了一种改进的模型,采用迭代方法来克服初始过度简化的树张量网络 (TTN) 模型的低精度收敛问题。
Abstract: This paper presented the assessment of cognitive load (as an e ff ective real-time index of task di ffi culty) and the level of brain activation during an experiment in which eight visually impaired subjects performed two types of tasks while using the white cane and the Sound of Vision assistive device with three types of sensory input—audio, haptic, and multimodal (audio and haptic simultaneously).第一个任务是识别对象属性,第二个任务是导航并避免在虚拟环境和现实世界设置中遇到障碍。结果表明,触觉刺激的直观不如音频,而视觉设备声音的导航增加了认知负载和工作记忆。在多模式刺激的情况下,视觉皮层不对称性比单独刺激(音频或触觉)低。无论导航或感觉输入的类型如何,视觉皮质活动与导航过程中的碰撞数量之间没有相关性。使用设备时,可激活视觉皮层,但仅适用于晚期用户。对于所有受试者,与白色的拐杖导航相比,用视觉设备的声音导航会引起低负价。
摘要 - 我们提出了一种基于稳固的视觉范围,用于使用Sepantic Kepoints的囊室不足农业机器人。自主态下导航由于作物行之间的紧密间距(〜0。75 m),由于多径误差而导致的RTK-GPS精度降解,以及从过度混乱中的LiDAR测量中的噪声。早期的工作称为crogfollow,通过提出具有最终感知的基于学习的视觉导航系统来解决这些挑战。然而,这种方法具有以下局限性:由于缺乏置信度措施而导致的遮挡过程中缺乏可解释的表示以及对异常预测的敏感性。我们的系统Cropfollow ++,以学习的语义关键点表示,引入了模块化感知体系结构。这种学习的表示形式比Cropfollow更模块化,更可靠,并且提供了一种置信度措施来检测闭塞。cropfollow ++在涉及碰撞的数量(13 vs. 33)的现场测试中,跨越〜1的碰撞数量显着超过了cropfollow。在挑战性的后期田野中,各有9公里。我们还在各种野外条件下大规模覆盖了多个囊性播种机器人的cropfollow ++,并讨论了从中学到的关键经验教训。
摘要:准确确定粒子径迹重建参数将成为高亮度大型强子对撞机 (HL-LHC) 实验面临的主要挑战。HL-LHC 同时发生的碰撞数量预计会增加,探测器占用率也会随之提高,这将使径迹重建算法对时间和计算资源的要求极高。命中次数的增加将增加径迹重建算法的复杂性。此外,由于探测器的分辨率有限以及命中的物理“接近度”,将命中分配给粒子径迹的模糊性也会增加。因此,带电粒子径迹的重建将成为正确解释 HL-LHC 数据的主要挑战。目前使用的大多数方法都基于卡尔曼滤波器,这些滤波器被证明是稳健的,并提供良好的物理性能。但是,它们的扩展性预计会比二次方差。设计一种能够在命中级别减少组合背景的算法,将为卡尔曼滤波器提供更“干净”的初始种子,从而大大减少总处理时间。量子计算机的显着特征之一是能够同时评估大量状态,使其成为在大型参数空间中进行搜索的理想工具。事实上,不同的研发计划正在探索量子跟踪算法如何利用这些功能。在本文中,我们介绍了我们在实现基于量子的轨迹查找算法方面的工作,该算法旨在减少初始播种阶段的组合背景。我们使用为 kaggle TrackML 挑战设计的公开数据集。
摘要:准确确定粒子径迹重建参数将成为高亮度大型强子对撞机 (HL-LHC) 实验面临的主要挑战。HL-LHC 同时发生的碰撞数量预计会增加,探测器占用率也会随之提高,这将使径迹重建算法对时间和计算资源的要求变得极为苛刻。撞击数量的增加将增加径迹重建算法的复杂性。此外,由于探测器的分辨率有限以及撞击的物理“接近度”,将撞击分配给粒子径迹的模糊性也会增加。因此,带电粒子径迹的重建将成为正确解释 HL-LHC 数据的主要挑战。目前使用的大多数方法都基于卡尔曼滤波器,这些滤波器被证明是稳健的,并能提供良好的物理性能。然而,它们的扩展性预计会比二次方差。设计一种能够在命中级别减少组合背景的算法,将为卡尔曼滤波器提供更“干净”的初始种子,从而大大减少总处理时间。量子计算机的显着特征之一是能够同时评估大量状态,使其成为在大型参数空间中进行搜索的理想工具。事实上,不同的研发计划正在探索量子跟踪算法如何利用这些功能。在本文中,我们介绍了我们在实现基于量子的轨迹查找算法方面的工作,该算法旨在减少初始播种阶段的组合背景。我们使用为 kaggle TrackML 挑战设计的公开数据集。