A部分 - 生物素化模板是通过质粒或合成DNA构建体中靶序列的PCR扩增产生的。此过程使用T7启动子上游至少30-100个碱基对的生物素化正向引物和非生物素化的反向引物。在设计QPCR分析以评估模板浸出时,T7启动子和正向引物之间的距离更大。另外,可以使用Biotin-DUTP在5'悬垂序列中通过填充填充物进行生物素化,这取决于正确的质粒设计。然后将生物素化模板直接固定到dynabeads
摘要 13 尽管测序革命已然到来,但迄今为止测序的大部分基因组仍然缺乏有关转录因子结合位点在调控 DNA 上的排列的任何信息。15 大规模并行报告基因检测 (MPRA) 有可能通过测量由调控区域的数千个突变变体驱动的基因表达水平来显著加速我们的基因组注释。然而,对此类数据的解释 18 通常假设调控序列中的每个碱基对都独立地对基因 19 表达作出贡献。为了能够以考虑调控序列上远距离碱基之间可能存在的相关性的方式分析这些数据,我们开发了深度学习 21 自适应调控序列标识符 (DARSI)。该卷积神经网络利用 22 MPRA 数据直接从原始调控 DNA 序列预测基因表达水平。通过利用这种预测能力,DARSI 系统地识别了转录因子在单碱基对分辨率下在调控区域内结合的位点。为了验证其预测,我们将 DARSI 与精选数据库进行了对比,证实了其在预测转录因子结合位点方面的准确性。此外,DARSI 预测了新的未映射结合位点,为未来的实验铺平了道路,以确认这些结合位点的存在并识别靶向这些位点的转录因子。因此,通过自动化和改进调控区域的注释,DARSI 生成了可付诸实践的预测,这些预测可以为理论-实验循环的迭代提供信息,旨在实现对转录控制的预测性理解。
摘要 微小RNA(miRNA)是真核生物中起作用的20-24个核苷酸(nt)小RNA。miRNA的长度和序列不仅与miRNA的生物发生有关,而且对下游生理过程(如ta-siRNA产生)也很重要。为了研究这些作用,在成熟的miRNA序列中产生小突变是有益的。我们使用TALEN(转录激活因子样效应核酸酶)和成簇的规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)在成熟miRNA序列中引入可遗传的碱基对突变。对于水稻,TALEN构建体针对五种不同的成熟miRNA序列构建,并产生可遗传的突变。在产生的突变体中,mir390 突变体表现出茎尖分生组织 (SAM) 的严重缺陷,这是一种无茎表型,可以通过野生型 MIR390 来挽救。小 RNA 测序表明 mir390 中的两个碱基对缺失会严重干扰 miR390 的生物合成。在拟南芥中,CRISPR/Cas9 介导的 miR160* 链编辑证实了 miRNA 的不对称结构不是二次 siRNA 产生的必要决定因素。使用双向导 RNA 的 CRISPR/Cas9 成功生成了具有片段缺失的 mir160a 无效突变体,其效率高于单向导 RNA。Col-0 和 Ler 背景下 miR160a 突变体的表型严重程度之间的差异凸显了 miR160a 在不同生态型中的不同作用。总的来说,我们证明 TALEN 和 CRISPR/Cas9 均能有效地修改 miRNA 前体结构、破坏 miRNA 加工并产生 miRNA 无效突变植物。
脱氧核糖核酸或DNA是一种双螺旋化合物,大多数人体都包含在细胞核的所有染色体中。DNA是遗传密码,该DNA的某些部分称为基因,这些基因传递了用于制造蛋白质的信息,这就是构成您的性状的原因。现在,核糖核酸(RNA)基本上是单链DNA,并且有3种不同类型的DNA都用于读取DNA。它从RNA聚合酶开始,该聚合酶沿着DNA的链移动,并使用核中剩余的游离核苷酸创建信使RNA,这是转录中的这一过程。在DNA核苷酸中成对称为碱基对;腺嘌呤与胸腺嘧啶,鸟嘌呤与胞嘧啶。当RNA聚合酶读取DNA时,它将其分为一半(打破碱基对),并添加新的,相应的核苷酸,对于胞嘧啶,它会添加鸟嘌呤,对于鸟嘌呤,它会添加胞嘧啶,为胸腺氨酸添加腺嘌呤,添加腺嘌呤,最后添加腺嘌呤,以添加Uracine。uracil是一种新化合物,用于构建RNA,但是DNA不包括它,就像RNA不包含胸腺素一样,换句话说,它们相互替代。所有这些后,使信使RNA准备转变为蛋白质,它必须从细胞中的细胞核和核糖体扫描它的细胞质中传播。在核糖体中,有称为转移RNA分子的分子,一旦读取了信使RNA,一次3个核苷酸,这些分子以链的形式释放氨基酸。这条氨基酸形成了复杂的形状,形成蛋白质,从而使其具有某些生物特征。
摘要:定期间隔短的短文重复(CRISPR)及其相关蛋白(CAS-9)是所有活细胞中基因组编辑工具的最有效,有效,准确的方法,并在许多应用学科中使用。指导RNA(GRNA)和CRISPR相关(CAS-9)蛋白是CRISPR/CAS-9系统中的两个基本组成部分。CRISPR/CAS-9基因组编辑的机制包含三个步骤,即识别,切割和修复。设计的sgrna通过互补的碱基对识别感兴趣基因中的目标序列。虽然CAS-9核酸酶在位点3碱基对上游与原始基序上游进行双链断裂,但通过非同源末端连接或指向同源的修复细胞机制来修复双链的断裂。CRISPR/CAS-9基因组编辑工具在许多领域都有广泛的应用,包括医学,农业和生物技术。在农业中,它可以帮助设计新谷物以提高其营养价值。在医学上,正在研究癌症,HIV和基因疗法,例如镰状细胞疾病,囊性纤维化和杜钦肌营养不良。该技术还通过CAS-9蛋白的高级修饰来调节特定基因。然而,免疫神经城,有效的分娩系统,脱靶效应和道德问题一直是扩展临床应用中技术的主要障碍。关键字:CRISPR,CAS-9,SGRNA,基因编辑,机制,应用尽管CRISPR/CAS-9成为分子生物学的新时代,并且从基本分子研究到临床应用中具有无数的作用,但在实际应用中仍然存在挑战,需要各种改进来克服障碍。
当Tra2β蛋白水平太高时,UCE会触发基因RNA中的额外外显子,引入了停止蛋白质合成的终止密码子,防止过度生产。突变破坏UCE的蛋白质限制功能会导致不育症,从而阻止遗传。因此,自然选择已在数百万年内保留了整个物种的UCE。超保存的元素:UCE是至少200个碱基对的脱氧核糖核酸(DNA)序列,它们在多种物种中一直保持不变,持续了8000万年或更长时间。
摘要 微小RNA(miRNA)是真核生物中起作用的20-24个核苷酸(nt)小RNA。miRNA的长度和序列不仅与miRNA的生物发生有关,而且对下游生理过程(如ta-siRNA产生)也很重要。为了研究这些作用,在成熟的miRNA序列中产生小突变是有益的。我们使用TALEN(转录激活因子样效应核酸酶)和成簇的规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)在成熟miRNA序列中引入可遗传的碱基对突变。对于水稻,TALEN构建体针对五种不同的成熟miRNA序列构建,并产生可遗传的突变。在产生的突变体中,mir390 突变体表现出茎尖分生组织 (SAM) 的严重缺陷,这是一种无茎表型,可以通过野生型 MIR390 来挽救。小 RNA 测序表明 mir390 中的两个碱基对缺失会严重干扰 miR390 的生物合成。在拟南芥中,CRISPR/Cas9 介导的 miR160* 链编辑证实了 miRNA 的不对称结构不是二次 siRNA 产生的必要决定因素。使用双向导 RNA 的 CRISPR/Cas9 成功生成了具有片段缺失的 mir160a 无效突变体,其效率高于单向导 RNA。Col-0 和 Ler 背景下 miR160a 突变体的表型严重程度之间的差异凸显了 miR160a 在不同生态型中的不同作用。总的来说,我们证明 TALEN 和 CRISPR/Cas9 均能有效地修改 miRNA 前体结构、破坏 miRNA 加工并产生 miRNA 无效突变植物。
摘要 我们报告了二氨基类固醇 irehdiamine A 与 DNA 复合物的平衡、松弛动力学和瞬态电二色性研究。结果与复合物在饱和状态下的 j# 扭结结构一致,每隔一个碱基对结合的类固醇会导致 DNA 结构扭结。支持这一假设的结果包括,当只有少量药物结合时,棒状细菌 DNA 分子的表观长度会减少,然后在饱和状态下表观长度会增加。极限二色性幅度意味着碱基相对于取向轴的倾斜度大幅增加;在饱和状态下,碱基 UV 跃迁矩与垂直于取向轴的平面倾斜约 310°。由于 260 纳米跃迁矩的偏振方向,结果表明碱基的倾斜度必须主要在碱基对的短轴而不是长轴上。复合物的显著增色与碱基堆积作用的丧失相一致,这是扭结结构所要求的。动力学结果暗示了一种双分子反应机理,其结合速率常数与温度有关,约为 108 M-' sec-1,解离速率常数约为 5 X 103 sec1I,几乎与温度无关。结合活化能和表观反应焓从 12 到 22 kcal mol-' 不等;正如碱基堆积作用丧失所预期的那样,复合物形成时会吸收热量。实验的一个异常结果是,两种真核 DNA 表现出更大的表观长度增加 (13%),而三种原核 DNA 的长度增加仅为 6%。复合物的动力学性质也存在差异。
关于端粒区的结构,一个共同的主题正在出现。染色体末端带有多个串联重复的简单卫星状 DNA(2)。除了染色体末端的简单序列外,端粒附近的区域通常还带有长段中间重复 DNA(1、10、13、15、18、24)。在酿酒酵母中,染色体以 200 到 600 个碱基对的不规则序列 C1_3A 结束(17、23;图 1)。此外,在 DNA 末端附近发现了两个中间重复元素,称为 X 和 Y'(8、9)。Y' 是一个高度保守的元素,长度为 6.7 千碱基(kb)(8、9)。 X 是一种比 Y' 保守性更低的元件,大小范围为 0.3 至 3.75 kb,位于 Y' 的着丝粒附近(8, 9)。C1_3A 重复序列的内部序列以及 DNA 复制的推定起点(自主复制序列)与 X 和 Y' 相关(7, 21)。这些特性与端粒相关序列在复制、重组或端粒区域修复中发挥作用相一致。已经开发出凝胶系统,可以分离完整的酵母染色体 DNA 分子(4, 16)。已记录了菌株 YNN281、A364a、DCO4 和 AB972(5)中每条染色体在一个系统(正交场交替凝胶电泳 [OFAGE])中的行为。通过改良的凝胶插入法 (16) (5) 从这些菌株中制备 DNA,并进行 OFAGE 处理。将 DNA 转移到硝酸纤维素上并与 X 和 Y' 特异性探针杂交 (20)(图 2)。通过琼脂糖凝胶分离 1.7 kb NcoI 片段,从 YRp12O (9) 制备 X 特异性探针。通过分离 1.7 kb BglII 片段,从 YRpl31b (9) 制备 Y' 特异性探针,该片段被亚克隆到 BamHI 消化的 M13 mpl8 中。从 pYtl03 (17) 切下 125 碱基对 HaeIII-MnlI 片段,其中包含 82 碱基对 C1_3A 重复序列。杂交探针来自据报道不含 C1_3A 重复序列的 X 和 Y' 区域。这一点已通过以下事实得到证实:源自 pYtl03 的真正的 C1_3A DNA 既不与 X 也不与 Y' 探针杂交。为探针选择的 X 区域在不同的 X 元素中是保守的 (8, 9)。表 1 中显示的数据是从 17 种不同的凝胶中汇编而来的,这些凝胶的切换间隔范围为 20 到 80 秒。每个菌株的 X 和 Y' 分布模式不同(图 2 和 3)。每个菌株中至少有三条最小染色体中有一条不与 Y' 探针杂交,在三个菌株中,五条最小染色体中的两条不与 Y' 探针杂交
Watson&Crick在1953年报道的双链DNA的第一个结构模型呈现了B形中的双螺旋,这是基因组DNA在大部分时间存在的形式。因此,寻求模仿天然DNA特性的人工DNA也应该能够采用B形式。Using a host – guest system in which Moloney murine leukemia virus reverse transcriptase serves as the host and DNA as the guests, we determined high-resolution crystal structures of three complexes including 5 0 -CTT BPPBBSSZZS AAG, 5 0 -CTT SSPBZPSZBB AAG and 5 0 -CTT ZZPBSBSZPP AAG with 10 consecu- tive unnatural nucleobase pairs in在自相融合16 BP双链寡核苷酸中的B形式。我们指的是包含两个核碱基对的替代同性信息工程(外星)遗传系统(P:Z,配对2-氨基 - imidazo- [1,2- a] -1,3,5-三嗪 - (8 H)-4-一个,带有6-氨基-5-氨基-5-氨基-5-氨基-5-奈替罗 - (1 H)-pyridin-pyridin-2-sone,sone,b。 6-氨基-4-羟基-5-(1 h)-Purin-2-one,带有3-甲基-6-氨基 - 乙酰胺-2-元素)作为外星人DNA。我们表征了p:z和b:s对的位置和序列特异性螺旋酶,核碱基对和二核苷酸步骤参数。我们得出结论,外星DNA表现出随序列而变化的结构特征。此外,Z可以参与与两个不同结构中捕获的类似序列中的替代堆叠模式。这一发现表明,与天然DNA相比,外星DNA的B形结构的曲目可能更大。