能量转化为化学能。[1] 后者尤其因碳氮化物光催化水分解的演示而加速。[2] 从那时起,人们开发出了许多不同的聚合物半导体,包括石墨烯类似物、共价有机框架或共轭梯形聚合物。[3,4] 通过控制 π 共轭的空间延伸、结构化、杂原子的类型和含量以及/或缺陷,可以调整它们的最终性质。扩展 π 共轭体系的合成,尤其是模型碳材料,通常需要高温,导致缺乏对结构的合理化学控制。因此,有必要寻找新的共轭碳质材料途径,避免恶劣条件,从而更好地控制所得结构。温和条件下的合成需要新的概念,例如新的单体或智能缩合-芳香化途径。这可以为更好地设计共价半导体提供必要的工具。一个很好的例子是 Müllen 和 Feng 合成的石墨烯纳米带。[5–7] 他们利用脱卤-环脱氢反应或狄尔斯-阿尔德反应
最近,我们考虑了与石墨相比,石墨烯和氧化石墨烯的拉曼光谱如何出现。在评论中,我们提到了Breit-Wigner-Fano(BWF)线的形状,Ferrari和Robertson,2000年被告知代表碳质材料的G带。BWF是一种用于考虑不对称和FANO共振的修改后的洛伦兹函数(请参阅Miroshnichenko等,2010,介绍Fano理论和模型)。例如,Hasdeo等,2014,使用“石墨烯拉曼光谱中的Breit-Wigner-Fano线形状”,因为“声子光谱与电子孔对激发光谱之间的干扰效果”(Hasdeo等人,2014年,Hasdeo hasde-hole taime coptation Spectra之间)。让我们强调,也可以通过使用分裂的洛伦兹函数来获得不对称性。表征BWF函数的内容是“形状共振”的存在,如Bianconi,2003年的图2所示,或者如其他地方给出的(Tanwar等,2022),抗抗抗耐药性的“蘸酱”。
碳点(CDS)是一类低成本碳纳米材料的通用名称,最初在2004年报告,1个具有平均粒径低于10 nm的光致发光(PL)特性。2,由于其易于且廉价的合成,低毒性,6个高(水性)溶解度,光电特性,可轻松的修饰和稳定性,这种碳质材料对从生物成像到传感器,光电子的许多应用都具有吸引力,其含量为3-6。7当前生产CD的合成方法包括自上而下和自下而上的方法,这些方法通常提供各种大小的聚集石墨烯样层和较大的结构多样性,包括SP 2 / SP 3碳网络和以不同比率的氧气富官能组。结果,根据合成,CD的光致发光特性在量子产率上大大变化,从<1%到95%。在过去的十年中,已经报道了光激发波长依赖性和独立发射。8–11 CD的实验和理论研究表明,光致发光主要源于涉及SP 2碳的杂交轨道的π-π*过渡。
在这项研究中,将源自废物yerba伴侣的非激活碳(YMC - c)作为开发碳 - 硫复合阴极(ymc-c@s)的基质。通过从残留的yerba伴侣中提取的硫化纤维素的简单过程产生了碳质材料,避免了化学激活或额外纯化的昂贵且复杂的阶段。由于其高碳含量和介孔结构,YMC-C可以作为硫的有效宿主。通过熔体扩散方法添加70%的硫后,YMC-C@S复合材料显示出1678 mAh GS-1作为阴极材料的显着初始容量,以及以低电荷/放电速率以高可逆容量。此外,即使在长期循环中遭受C率增加时,1C的排放能力为777 mAh g s-1和165循环后的674 mAh g s-1也表现出良好的速率能力。当优化循环协议时,即使使用快速充电阶段,YMC-C@S复合材料也会显示出每个周期的容量损失非常低。通过在7.5个月内进行的自放电测试的积极结果证实,YMC-C作为LSB中有效的阴极材料的功效得到了证实。
纳米材料和生物结构的消化杂志卷。19,编号1,1月至2024年3月,第1页。 319-324超热路线D. Ochoa合成的碳量子点的光致发光特性的影响,J。GuzmánTorres,E。M。M. Cervantes,J。L。Cavazos,I。Gómez,I。Gómez * Nuevo Leon,Nuevo Leon,Nuevo Leon,Nuevo Leon,Chement of Chemical Sciencess clabience overation overation overation overation overals overals overals ov。大学,C.P。 66455 San Nicolas de Los Garza,N.L。 墨西哥由于其化学和物理特性,该研究的重点是通过水热途径合成的超声处理对碳量子点的影响,并作为墨西哥米歇尔的酸味柠檬汁的前体。 在1、2和3小时的时间内用超声波电极进行剥离,以提供有关其对光致发光效果的解释,发现随着时间的时间,1小时的时间,PL发射改善了261 A.U. A.U. 至448 A.U. 进行了其他特征,以确认在PL中获得的结果,在PL中获得的平均粒径是通过SEM分析的,观察到范围为5至11 nm的粒径,平均尺寸为7.5 nm,并确认碳质材料,进行UV-VIS,进行UV-VIS,显示出在340 nm附近的分辨率吸收型UV吸收带。 (收到2023年11月14日; 2024年2月26日)关键字:碳量子点,水热合成,超声处理,光致发光1。 这些特征很有吸引力,并导致它们在需要最小风险的应用中使用,使CQD良好用于生物成像[7],光子设备[8],太阳能电池[9]和光电传感器[10]。大学,C.P。66455 San Nicolas de Los Garza,N.L。 墨西哥由于其化学和物理特性,该研究的重点是通过水热途径合成的超声处理对碳量子点的影响,并作为墨西哥米歇尔的酸味柠檬汁的前体。 在1、2和3小时的时间内用超声波电极进行剥离,以提供有关其对光致发光效果的解释,发现随着时间的时间,1小时的时间,PL发射改善了261 A.U. A.U. 至448 A.U. 进行了其他特征,以确认在PL中获得的结果,在PL中获得的平均粒径是通过SEM分析的,观察到范围为5至11 nm的粒径,平均尺寸为7.5 nm,并确认碳质材料,进行UV-VIS,进行UV-VIS,显示出在340 nm附近的分辨率吸收型UV吸收带。 (收到2023年11月14日; 2024年2月26日)关键字:碳量子点,水热合成,超声处理,光致发光1。 这些特征很有吸引力,并导致它们在需要最小风险的应用中使用,使CQD良好用于生物成像[7],光子设备[8],太阳能电池[9]和光电传感器[10]。66455 San Nicolas de Los Garza,N.L。墨西哥由于其化学和物理特性,该研究的重点是通过水热途径合成的超声处理对碳量子点的影响,并作为墨西哥米歇尔的酸味柠檬汁的前体。在1、2和3小时的时间内用超声波电极进行剥离,以提供有关其对光致发光效果的解释,发现随着时间的时间,1小时的时间,PL发射改善了261 A.U. A.U.至448 A.U. 进行了其他特征,以确认在PL中获得的结果,在PL中获得的平均粒径是通过SEM分析的,观察到范围为5至11 nm的粒径,平均尺寸为7.5 nm,并确认碳质材料,进行UV-VIS,进行UV-VIS,显示出在340 nm附近的分辨率吸收型UV吸收带。 (收到2023年11月14日; 2024年2月26日)关键字:碳量子点,水热合成,超声处理,光致发光1。 这些特征很有吸引力,并导致它们在需要最小风险的应用中使用,使CQD良好用于生物成像[7],光子设备[8],太阳能电池[9]和光电传感器[10]。至448 A.U.进行了其他特征,以确认在PL中获得的结果,在PL中获得的平均粒径是通过SEM分析的,观察到范围为5至11 nm的粒径,平均尺寸为7.5 nm,并确认碳质材料,进行UV-VIS,进行UV-VIS,显示出在340 nm附近的分辨率吸收型UV吸收带。(收到2023年11月14日; 2024年2月26日)关键字:碳量子点,水热合成,超声处理,光致发光1。这些特征很有吸引力,并导致它们在需要最小风险的应用中使用,使CQD良好用于生物成像[7],光子设备[8],太阳能电池[9]和光电传感器[10]。Introduction Materials derived from carbon are interesting materials and are currently receiving special attention due to the applications that can be accessed, one of the materials derived from these, are carbon quantum dots (CQD) [1], they are materials that have average sizes of 10 nm[2], due to this they have exceptional structural and electronic properties such as water solubility, photoluminescence, low toxicity, biocompatibility [2], [3], [4],[5],[6]。CQD的光学特性非常有利,这有助于通过光致发光[11],[12],[13]来检测污染物,病毒等的传感器使用,因此本研究的重点是该特征,这项功能主要由合成方法提供,主要是我们对综合方法进行了综合效果,并构成了整体的友好,并且是对环境的良好友好的友好,并且是在综合友好的范围内,并且是对环境的友好效果,并且是对环境的特征,并且是综述的。水热过程是获得量子点最常用的途径之一,因为这是一种使用低温的方法,相对较短,并且获得了颗粒的良好光致发光发射[1],[3],[14],[15]。为了改善该财产,已经有报道证明,通过使用超声处理,可以获得更好的PL排放。这是由于Sonotrode与材料在水性培养基中的接触,其作用是将大颗粒碎裂至小,因此由于机械振动而引起的更多分散颗粒,这将导致颗粒接近电磁频谱中的蓝色发射[7] [16],[17],[17],[16],[17]。在CQD合成后的这项工作中,我们研究了1、2和3小时内使用Sonotrode对CQD颗粒的效果,从而评估了它们通过光致发光光谱仪(PL),傅立叶转换基础光谱光谱(FTIR)和传输的粒径和光致发光发射(flassional sirtron Microspopicy和Electron Electron(flassital)。
热液工艺能够有效地将废弃生物质转化为燃料和碳质材料。用聚光太阳能满足热量需求是提高工厂效率和推行循环经济原则的明智策略。为了通过零能耗途径生产液体和固体生物燃料,这项工作提出了两种概念设计,用于将聚光太阳能系统 (CSS) 与热液液化 (HTL) 和热液碳化 (HTC) 工厂相结合。用于满足热液热量需求的太阳能配置由一组使用熔盐运行的抛物线槽式集热器组成,熔盐既用作热载体流体,又用作热能存储介质。模拟了两种不同的场景来连续处理木材和有机废物。在第一种情况下,CSS 与连续 HTL 反应器(在 400°C 和 300 bar 下运行)相结合,然后进行热裂解和加氢处理,以将生物原油升级为可销售的液体生物燃料。第二种方案考虑使用连续 HTC 反应器(工作温度为 220 °C 和压力为 24 bar)运行的 CSS,将有机废物转化为固体燃料(水热炭)。CSS 和两个热液工厂都是基于实验数据建模的。研究了能源消耗和技术经济方面。
摘要:这篇全面的评论文章总结了从多苯并嗪获得的高级碳质材料的关键特性和应用。鉴定在碳化过程中产生的几种热降解产物,允许碳化的几种不同的机制(竞争性和独立机制),同时还确定了苯唑阵的热稳定性。多苯第二嗪衍生的碳材料的电化学性能,指出伪电容性和电荷稳定性特别高,这将使苯佐昔唑适用于电极。苯唑嗪的碳材料也具有高度的用途,可以通过多种方式合成和制备,包括泡沫,泡沫,纳米纤维,纳米球,纳米球和凝胶凝胶,其中一些提供了独特的特性。特殊特性的一个例子是,材料不仅可以作为气凝胶和凝聚凝胶作为多孔,而且可以作为具有高度量身定制孔隙率的纳米纤维,通过各种制备技术控制,包括但不限于使用表面活性剂和二氧化硅纳米粒子。除了高可调制的孔隙率外,苯佐昔嗪还具有多种特性,可使它们适用于碳化形式的众多应用,包括电极,电池,气体吸附剂,催化剂,屏蔽材料和浓烈的涂层等。极端的热和电稳定性还允许苯唑嗪在更恶劣的条件下(例如在航空航天应用中)使用。
近年来,纳米级技术已成为材料科学和药物开发的最后边界[1]。纳米结构的碳质材料[2,3]在此中发挥了主要作用,例如碳纳米管和石墨烯(GF),因为它们的内在特性和易于功能化[4]。如今,石墨烯和相关材料代表了高性能碳材料中最先进的边界[5],欧盟研究委员会实施了强大的行动,名为EU石墨烯旗舰[6]。该计划旨在促进对石墨烯及其相关衍生物的基本调查,以确立欧洲社区的领域领导者[5]。这是这种同素异形的一原子厚的平面碳的最高特性,这些平面薄板紧紧地堆积在六边形细胞结构中[7]。石墨烯及其相关材料的特征可以在广泛的应用中被利用,以改善塑料[11,12]和金属[13,14]的机械鲁棒性和电子性能[8-10],即使以非常有限的量,其价格也不可忽略地忽略了其对尊重浓度的市场,因此它的价格也不可忽略。由于其高成本,石墨烯和相关材料不能用于廉价的大规模生产。但是,它们可以用于高核成本应用中,例如Frontier Medicine [24]。这个领域已被恶性疾病和对人类健康的越来越关注所增强。制药公司和学术机构已深深地致力于开车前往新设计的药物和程序的未达到的水平[25,26]。探索了大量可用的协议,新的途径[27,28],以开发用于药物输送的新的和创新的材料[29],再生医学[30],theragnognotakentic治疗[31]和组织修复[32]。
基于可再生能源的能源经济已被提出作为摆脱对化石燃料依赖的一种出路。可充电锂离子电池 (LIB) 预计将在 2030 年内满足未来的电动汽车、电动航空和固定电网储能目标。然而,LIB 需要有毒且昂贵的金属,如钴、镍、锰等才能发挥作用。锂和钴的地质不对称分布以及以采矿为中心的地缘政治和不道德的童工,导致原材料成本大幅波动。它影响了电动汽车中使用的大型 LIB 组的市场价格稳定性。在双碳电池中,两个电极均由碳质材料组成,电解质中的离子会嵌入和脱嵌到电极基质中。由零过渡金属组成的新型双碳电池对环境无害。它可以将整体电池成本降低 20-25%,并有望抑制市场价格的不可预测性。使用普遍存在的碳替代重金属作为电极活性材料和集电器,具有轻便灵活等优点。制备的5.0伏(标称电压4.6伏)电池的能量密度约为100瓦时/公斤,进一步改造后可扩展到150瓦时/公斤。研究小组认为,开发的电池可能有潜力用于高压应用、复杂的电池供电医疗设备、电动汽车的再生制动系统和固定电网。研究小组负责人苏伦德拉·库马尔·马莎博士表示:“这项研究将进一步突破能量密度极限,他们的远大愿景包括将双碳系统作为更便宜的LIB替代品引入印度市场。”这项研究由印度理工学院海得拉巴分校的博士生 Shuvajit Ghosh 先生和 Udita Bhattacharjee 女士在 Surendra K. Martha 博士的指导下与美国橡树岭国家实验室和印度孟买海军材料研究实验室合作完成。海军研究委员会 (DRDO) 支持该项目。详细的实验和讨论可以在题为“锂基可充电电池中沥青涂层碳纤维的多功能利用 - Ghosh, S.、Bhattacharjee, U.、Patchaiyappan, S.、Nanda, J.、Dudney, NJ 和 Martha, SK”的文章中找到,该文章发表在《先进能源材料》上,2021 年,2100135(DOI:10.1002/aenm.202100135)。
大气中二氧化碳 (CO 2 ) 浓度的持续增加引发了全球变暖和气候变化,碳中和是人类社会最重要的目标之一。CO 2 的捕获和转化已成为减缓气候变化和减少温室气体排放的研发热门领域。先进材料和工艺在这些努力中发挥着至关重要的作用。在 CO 2 捕获中,目标是捕获来自发电厂、工业过程和运输等各种来源的 CO 2 排放。正在开发多孔材料、膜和溶剂等先进材料以选择性捕获 CO 2。这些材料具有高表面积和特殊性能,能够有效地吸附和分离 CO 2。西波美拉尼亚理工大学的 Karolina 通过热液工艺从甜菜糖蜜中制备碳质材料,然后进行化学活化,并将其用于 CO 2 捕获(Kielbasa)。具有 2005 m 2 g −1 高比表面积和 0.851 cm 3 g −1 总孔体积的活性生物碳在 1 bar 和 0 °C 下对 CO 2 的最高吸附量为 7.1 mmol/g。一旦捕获 CO 2,就可以通过各种过程将其转化为有价值的产品。人们正在探索先进的催化材料,将 CO 2 转化为化学品、燃料和其他有用的产品。例如,CO 2 可以转化为甲醇,甲醇可以用作燃料或作为生产其他化学品的原料。江苏大学的徐等人用溶胶-凝胶法制备了具有 Cu 2 In 合金结构的 Cu 1 In 2 Zr 4 -OC 催化剂,用于 CO 2 加氢制甲醇(宋等人)。他们发现煅烧前后的等离子体处理可以在一定程度上提高 CO 2 加氢活性。尤其是在煅烧前经过等离子体改性的Cu1In2Zr4-O-PC催化剂上,在反应温度270℃、反应压力2MPa、CO2/H2=1/3、GHSV=12000mL/(gh)的条件下,CO2转化率达到13.3%,甲醇选择性达到74.3%,CH3OH时空产率达到3.26mmol/gcat/h。这是因为等离子体改性可以减小粒径,增强Cu和In之间的相互作用,并使Cu的2p轨道结合能移至更低位置。期待先进技术将在制备具有高CO2转化效率和稳定性的材料方面做出巨大贡献。电化学过程(例如电还原)也正在用于CO2转化的研究。曹等人。嘉兴学院教授综述了电催化领域的最新进展