磁轴承的模拟涉及高度非线性物理,对输入变化高度依赖。此外,在使用经典计算方法时,在现实的计算时间内,这种模拟是耗时而无法运行的。另一方面,经典模型还原技术无法在允许的计算窗口内实现所需的精度。为了解决这种复杂性,这项工作提出了基于物理的计算方法,模型还原技术和机器学习算法的组合,以满足要求。用于表示磁性轴承的物理模型是经典的Cauer梯子网络方法,而模型还原技术是在物理模型解决方案的误差上应用的。后来,在潜在空间中,机器学习算法用于预测潜在空间中校正的演变。结果显示了解决方案的改进,而不会稀释计算时间。该解决方案是几乎实时计算的(几毫秒),并将其与有限的元素参考解决方案进行了比较。关键字:光谱法,减少基础,机器学习,磁性轴承,磁悬浮,长期术语记忆
相关控件:(1)另请参见2A991。(2)安静的跑步轴承是“受ITAR的约束”(请参阅22 CFR零件120至130。)相关定义:环形轴承工程师委员会(ABEC)。项目:注意:2A001.A包括滚珠轴承和滚子元素“专门设计”为其中指定的项目。a。滚珠轴承和坚固的滚轮轴承,具有制造商根据ISO 492公差2类或4类(或国家等效物)或更好的所有公差,并具有由Monel或Beryllium制成的“环”和“滚动元素”;注意:2A001.A不能控制锥形辊轴承。技术说明:出于2A001.A:1。“环”是径向滚动轴承的环形部分,其中包含一个或多个跑道(ISO 5593:1997)。2。“滚动元素”是在跑道之间滚动的球或滚子(ISO 5593:1997)。b。[保留] c。主动磁性轴承系统使用以下任何一个和“专门设计”的组件: