*1. B OPN 、B OPS :动作点 B OPN 及 B OPS 是增加(将磁铁靠近)磁铁 (N 极或 S 极) 施加于本 IC 的磁通密度后,输出电压 (V OUT ) 发生变化时的磁通密度值。 即使磁通密度超过 B OPN 或 B OPS ,V OUT 仍会保持该状态。 *2. B RPN 、B RPS :解除点 B RPN 及 B RPS 是减少(将磁铁远离)磁铁 (N 极或 S 极) 施加于本 IC 的磁通密度后,输出电压 (V OUT ) 发生变化时的磁通密度值。 即使磁通密度低于 B RPN 或 B RPS ,V OUT 仍会保持该状态。 *3. B HYSN 、B HYSS :滞后宽度 B HYSN 及 B HYSS 分别是 B OPN 与 B RPN 、B OPS 与 B RPS 之差。备注 磁密度单位mT可以用公式1 mT = 10高斯进行换算。
本研究探讨了低功率现成感应电机中空间谐波的建模方法。这些节省成本的机器通常表现出气隙圆周上的径向磁通密度分布,远非正弦。磁通密度谐波会产生额外的定子电流分量,从而导致不必要的扭矩振荡。同时,它们还为状态监测或转子速度估计提供了有用的信息。要利用这些特性实现更好的驱动性能,就需要更准确但更简单的机器描述。这些方面具有挑战性,因为通常没有关于现成机器内部结构和磁特性的信息,而所考虑的物理现象很复杂。
z 概述 AS1642 采用双极工艺,专为高性能锁存检测霍尔效应应用而设计,如家用电器、工业、转子位置传感、无刷直流电机等。霍尔 IC 集成了一个用于磁感应的片上霍尔电压发生器、一个放大霍尔电压的比较器、一个开路集电极输出和一个施密特触发器,以提供开关滞后以抑制噪声,以及一个电压调节器,用于在 3.5V 至 50V 的电源电压下工作。AS1642 设计用于响应交替的北极和南极。当磁通密度 (B) 大于工作点 (B OP ) 时,输出将打开(低),输出保持直到磁通密度 (B) 低于释放点 (B RP ),然后关闭(高)。该设备采用 SIP-3L 封装,额定温度范围为 -40°C 至 125°C。该封装符合 RoHS 规定。
• 最大磁通密度:变压器尺寸和损耗对于满足规格至关重要。对于此标准,根据施加在初级侧的最大伏秒来评估最大磁通密度 B MAX。变压器内部的磁芯损耗与此参数直接相关,因此会影响变压器的设计(几何形状、磁芯材料等)。 • 电气应力:为了管理高输入电压,功率级需要高压功率开关。某些结构可以帮助降低施加在功率开关上的电压应力。它可以减小它们的尺寸并提高它们的性能,因为在硅集成环境中,没有多少功率开关可以承受 1 kV。 • ZVS:某些拓扑结构支持 ZVS(零电压开关)操作,可以减少开关损耗,这对于高压来说非常重要。然而,这种模式需要特别注意功率级的命令。 • 复杂性:为了减小功率级尺寸,一种选择是减少所需的组件数量及其尺寸。如果变压器尺寸已经由第一个标准描述,那么开关(MOSFET、二极管)、电容器等的数量也是功率级在电路板上所占空间的指示。这些元件的值和额定电压当然会影响它们的尺寸,也可以指示将它们集成到芯片中的可能性。• 其他标准也很重要,如启动、反馈回路、稳定性方法等,但这里不予考虑。
目录 章 页码 1. 介绍................................................................................................................ 1 2. 理论................................................................................................................... 6 2.1 直轴和交轴................................................................................................... 6 2.2 等效电路................................................................................................... 8 2.3 功率角特性................................................................................................... 9 3. 设计参数...................................................................................................... 11 3.1 气隙...................................................................................................... 11 3.2 磁通密度...................................................................................................... 12 3.3 定子和励磁绕组...................................................................................... 12 3.4 波形...................................................................................................... 13 3.5 电抗...................................................................................................... 13 3. 转子设计............................................................................................................. 15 4.1 机械...................................................................................................... 15 4.1.1 励磁绕组.
摘要 — 本文首次提出了一种具有频率不变点的无轭母线电流传感器。现有的矩形母线电流传感器由于大块母线中的涡流而存在频率依赖性问题。所提出的传感器具有用于母线传感区域的新型 C 形结构。首次观察到该结构在 C 形母线的两侧提供了一组频率不变点。在所提出的方案中,使用两个差分形式的集成磁通门传感器来测量这些不变点处的磁通密度。使用 Ansys Maxwell 涡流求解器执行的基于有限元法 (FEM) 的 3-D 分析提供了频率不变点的精确位置。制作了一个原型,并使用德州仪器的 DRV-425 集成磁通门传感器在实验室中对 C 形母线传感器进行了功能测试。实验中,放置在频率不变点的磁通门传感器测量了从 50 Hz 到 1000 Hz 的多个频率下的磁通密度。测试结果表明,使用所提出的 C 形母线,由于频率依赖性而导致的误差从 14 % 降低到 0.85 %。
图 3.11:系统性能比较…………………………………………………………………….56 图 3.12:初级双极线圈和初级单极线圈的互操作性研究…………..58 图 4.1:模拟中的线圈结构…………………………………………………………………………62 图 4.2:所提线圈结构的 MAXWELL 模拟模型概览和正面视图…………………………………………………………………………………….63 图 4.3:用于接收器的空心圆柱体……………………………………………………………………...64 图 4.4:所提线圈结构和同轴线圈结构中的设计变量…………………………………...64 图 4.5:所提线圈结构中的旋转角、同轴线圈结构中的旋转角以及随旋转角变化的互感……………………………………...66 图 4.6:YZ 平面中的磁通密度…………………………………………………………...68 图4.7:ZX 平面的磁通密度………………………………………………………………...68 图 4.8:XY 平面的磁通密度………………………………………………………………...69 图 4.9:线圈参数说明…………………………………………………………………………72 图 4.10:发射器 A 处的全桥逆变器和接收器 c 处的全桥整流器……………..73 图 4.11:接收器 c 和发射器 A 的等效互感模型………………………………..75 图 4.12:第 4.4 节中提出的线圈结构的仿真和实验模型……………………………………………………………………………………77 图 4.13:随气隙变化的自感和互感………………………………..79 图 4.14:实验设置……………………………………………………………………………………80 图 4.15: P out = 1.0 kW 和 CR = 12 Ω 时的波形……………………………………………………81 图 4.16:环境空气条件下 CR 模式和 CV 模式下的系统性能…………...81 图 4.17:三种条件下的系统性能………………………………………………………………...82 图 5.1:所提出的理想线圈结构和仿真模型概述……………………………………………...84 图 5.2:所提出的理想线圈结构和之前的线圈结构中的旋转错位……………………………………………………………………………………86 图 5.3:第 4 章中提出的理想线圈结构和之前的线圈结构的总互感随旋转错位的变化…………………………………………………87 图 5.4:所提出的分段线圈设计……………………………………………………………………...88 图 5.5:所提出的分段线圈设计与之前的线圈设计中总互感随旋转错位的变化错位..………………89 图 5.6:YZ 平面、ZX 平面和 XY 平面的磁场分布………………..90 图 5.7:电路图………………………………………………………………………………92 图 5.8:线圈原型的仿真模型………………………………………………………………95 图 5.9:总互感的模拟和测量结果………………………………………………96 图 5.10:采用所提出的线圈结构的无线充电系统的实验装置…………………………97 图 5.11:系统完全对齐且旋转错位为 30° 时的波形…….97 图 5.12:旋转错位时输出功率和 DC-DC 效率的实验结果……………………………………………………………………………………98
摘要:非晶态金属 (AM),特别是非晶态铁磁金属,被认为是一种令人满意的磁性材料,可用于开发高效、高功率密度的电磁设备,例如电机和变压器,这得益于其各种优点,例如合理的低功耗和中高频下的非常高的磁导率。然而,这些材料的特性尚未得到全面研究,这限制了其在具有通常具有旋转和非正弦特征的磁通密度的高性能电机中的应用前景。在不同磁化下对 AM 进行适当的表征是将这些材料用于电机的基础之一。本文旨在广泛概述在存在各种磁化模式(特别是旋转磁化)的情况下的 AM 特性测量技术,以及用于先进电机设计和分析的 AM 特性建模方法。还讨论了可能的未来研究任务,以进一步改进 AM 应用。