COVID-19 疫情导致医护人员个人防护装备 (PPE) 普遍短缺,包括 N95 口罩(过滤式面罩呼吸器;FFR)。这些口罩仅供一次性使用,但其灭菌并随后重复使用有可能大大缓解短缺问题。在这里,我们研究了使用 SteraMist 设备(TOMI;马里兰州弗雷德里克)在密封环境室中产生的离子化过氧化氢 (iHP) 对 PPE 进行灭菌。使用生物指示剂组件中的细菌孢子评估 iHP 灭菌的效果。经过一次或多次 iHP 处理后,对来自三家制造商的五种型号的 N95 口罩的功能保留情况进行了评估,评估依据是它们形成气密密封(使用定量适合性测试测量)和过滤气溶胶颗粒的能力。过滤测试在大学实验室和国家职业安全与健康研究所 (NIOSH) 预认证实验室进行。数据表明,使用 SteraMist iHP 技术灭菌的 N95 口罩可保持过滤效率达 10 次,这是迄今为止测试的最大次数。典型的 iHP 环境室体积约为 80 立方米,可处理约 7000 个口罩和其他物品(例如其他 PPE、iPAD),这对于繁忙的医疗中心来说是一种有效的方法。
为了降低 RO 工艺的能量需求,研究人员还在研究其他技术,如纳滤。[3–5] 在这些技术中,电容去离子 (CDI) 在能耗、工艺简单、减少结垢和低成本方面具有众多优势。[6] 对于 CDI,不需要膜和压力。盐通过电场去除,并以双电层 (EDL) 的形式储存在多孔介质中以产生淡水。电容技术的传统电极依赖于高导电性和高表面积的碳基材料。[7–10] CDI 的工作原理与流体电化学电容器相同;[11] 对浸入含有电解质的溶液中的两个多孔电极施加电压,离子被吸引到电极表面并形成 EDL。这种机制可以在不施加过压的情况下从水中去除盐分,由于没有机械运动部件,因此维护工作量较少。此外,能量不会在此过程中损失,而是以电化学能的形式储存在电极内部。因此,它可以以静电荷存储特有的极高效率进行回收。遗憾的是,这项技术的现状与更成熟的反渗透技术的性能还相差甚远。[7,12] 必须开发出具有高除盐率、低能量损失和可扩展工艺的新材料。在这种情况下,具有净表面电荷的功能化材料引起了科学界的极大兴趣。[13–15] 众所周知,控制表面电荷的种类可以提高 CDI 设备的脱盐性能,因为这与微调零电荷电位 (V PZC ) 的可能性直接相关。 [16,17] V PZC 是必须施加在电极上以确保其表面电中性的电位。通常,每种材料都有自己的 V PZC,这取决于其表面存在的化学物质。例如,由高氧化度碳原子构成的氧化石墨烯 (GO) 在水中始终显示负的 z 电位,因此如果用作 CDI 电极材料,则具有正的 V PZC。考虑电极 V PZC > 0 的情况将有助于阐明这一概念。在平衡状态下,该电极的表面将充满正电荷。然后,如果施加大于 V PZC 的电压,就会发生称为“共离子驱逐”的现象。从 0 到 V PZC 的电位将用于排出表面上自然存在的正电荷(同离子),而其余部分( V − V PZC )将用于存储负电荷(反离子)。类似的推理
需要可离子化脂质 广义上讲,核糖核酸 (RNA) 疗法包括反义寡核苷酸 (ASO)、小干扰 RNA (siRNA)、微小 RNA (miRNA)、信使 RNA (mRNA) 和单向导 RNA (sgRNA) 介导的 CRISPR-Cas9 系统,它们可以通过不同的作用方式操纵基本上任何感兴趣的基因 1 。然而,RNA 疗法易受核酸酶影响,并且由于其体积大且带负电荷而无法渗透细胞。通过可临床转化的脂质纳米颗粒 (LNP) 将 RNA 递送至靶细胞为应对包括 COVID-19 在内的一系列危及生命的疾病提供了巨大的机会 2 。LNP 通常由四种成分组成——可离子化脂质、磷脂、胆固醇和聚乙二醇化脂质,其中可离子化脂质在保护 RNA 和促进其胞浆运输方面起主要作用。可离子化脂质在酸性 pH 下带正电荷以将 RNA 浓缩为 LNP,但在生理 pH 下呈中性以最大程度地降低毒性。它们可以在细胞摄取后在酸性内体中质子化,并与阴离子内体磷脂相互作用形成与双层膜不相容的锥形离子对(图 1)。这些阳离子-阴离子脂质对驱动从双层结构到倒六边形 H II 相的转变,从而促进膜融合/破裂、内体逃逸和货物释放到细胞溶胶 3 。自 2008 年以来,已经创建了具有多种化学特性的可离子化脂质。根据这些脂质的结构对其进行系统分类可以极大地有利于该领域并促进下一代可离子化脂质的开发。目前,有五种主要的可离子化脂质类型被广泛用于 RNA 递送(图 1)。
电容去离子化是一种新兴的工业用海水淡化技术。电极设计和系统开发方面的最新进展已导致超高盐吸附性能的报道,有利于其在农业水处理中以低成本的潜在应用。在本研究中,我们全面总结了实现超高离子吸附性能的多孔电极设计策略,考虑了实验参数、化学调节的材料特性、氧化还原化学和智能纳米结构等因素,以供未来的电极设计使用。此外,我们努力建立电容去离子化 (CDI) 技术与其在农业领域的适用性之间的关联,特别是专注于水处理,重点是与盐度、硬度和重金属相关的不良离子,以实现无害灌溉。此外,为了确保 CDI 系统在农业中的高效和经济应用,我们对 CDI 成本分析的文献进行了全面概述。通过解决这些方面,我们预计超高盐吸附 CDI 系统在未来的农业应用中将大有可为。
空间环境的空间环境对太空行程包含主要危害,其中包括空间辐射和微型度量,如图1所示。空间辐射主要由电子和质子,太阳颗粒事件(SPE)和银河宇宙辐射(GCR)组成。SPE是来自太阳的高能电荷颗粒的数量很高(每单位时间)的事件。它们可以源自太阳浮动部位置或与冠状质量弹出相关的冲击波。GCR由高能电荷颗粒组成,该颗粒源自大型恒星的超新星和活性银河核。它从各个方向击中月球,火星,小行星和航天器,并且总是以背景辐射为单位。GCR是由核(完全离子化原子)的原始构成的,以及来自电子和正面的较小贡献(约2%)。1具有高原子数(z> 10)和高能量(E> 100 GEV)的GCR颗粒的小但很重要的成分。1这些高原子数,高能量(HZE)离子颗粒仅占总GCR含量的1-2%,但它们与非常高的特种离子化相互作用,因此贡献了约50%的长期空间辐射剂量的长期辐射剂量。2这些GCR颗粒,
•探测器通常观察到闪烁光,电离,振动•仅在某些能量阈值之上可用的闪烁和电离•在弹性核后坐力,闪烁和电离中,闪烁和离子化是由于后退核与邻近的核之间碰撞而导致的,而在MIGDAL中,后退的原子ATOM ATOM ATOM ATOM ATMED/IRISID/IRISINED本身。这对于较小的能量是可能的
储能电池的辐射耐受性是探索或核救援工作的关键指数,但没有对LI金属电池进行彻底的研究。在这里,我们系统地探索了伽马射线下Li金属电池的能量存储行为。在伽马辐射下Li金属电池的孔子降解与阴极,电解质,粘合剂和电极界面的活性材料有关。特定的,伽马辐射会触发阴极活性材料中的阳离子混合,从而导致极化和容量差。电解质中溶剂摩尔的离子化促进了LIPF 6的分解及其分解,分子链断裂和交联削弱了粘合剂的键合能力,从而导致电极破裂并减少活性材料利用。 此外,电极界面的恶化会导致LI金属阳极的降解并增加细胞极化,从而加快了Li金属电池的灭亡。 这项工作为辐射环境中的li batteries发展提供了显着的理论和技术证据。电解质中溶剂摩尔的离子化促进了LIPF 6的分解及其分解,分子链断裂和交联削弱了粘合剂的键合能力,从而导致电极破裂并减少活性材料利用。此外,电极界面的恶化会导致LI金属阳极的降解并增加细胞极化,从而加快了Li金属电池的灭亡。这项工作为辐射环境中的li batteries发展提供了显着的理论和技术证据。