锅炉、医院等。浸渍银离子的碳构成了 Puronics 大部分产品线的过滤床。图片来源:Puronics Water System Inc.
摘要讨论了激光谐振电离技术在放射性离子束设备上产生的单个带电离子的生产中的应用。结合高效率和元素的选择性的abily是使谐振离子激光离子源(RILIS)成为许多放射性离子束设备的重要组成部分。在CERN,RILIS是Isolde设施中最常用的离子源,每年运营时间为3000小时。对于某些同位素,RILI也可以用作快速有意义的激光光谱工具,前提是光谱分辨率足够高以揭示核结构对原子光谱的影响。这可以研究具有生产率甚至低于每秒1个离子的同位素的核性质,在某些情况下,可以实现异构体选择性离子ization。总结了可用于在放射性离子束设备上实施共振激光离子的解决方案。涵盖了激光要求,离子源条件,选择性,效率和应用等方面。 还将描述在CERN ISOLDE设施实施的用于激光光束运输和控制,可靠性和易于操作的实际解决方案。涵盖了激光要求,离子源条件,选择性,效率和应用等方面。还将描述在CERN ISOLDE设施实施的用于激光光束运输和控制,可靠性和易于操作的实际解决方案。
大型有机铵离子的掺入使卤化物钙钛矿复合物的结晶动力学和层形成过程,难以控制,并导致抑制电荷转运的问题,并形成很小的晶粒。在本文中,在前体溶液中引入了氯化甲基(MACL)和过量的PBI 2作为共同辅助剂,以控制苯基甲基铵或苯甲酰胺或苯甲酰胺(PMA + SPACER)(PMA + SPACER)和基于基于fa +)基于fa +)的Quasi-2d pma 2d pma + 1 pba n i i。钙钛矿层的形成。通过这种方法,层的形态,内相分布和电荷传输特性得到改善。采用光泽放电光学光谱(GD-OES)和其他技术,据揭示了在共同添加剂存在下制备的准2D perovskites在整个过程中表现出均匀的溶剂清除动力学。此外,在热退火时,晶粒生长模式是侧向的。它产生了具有低陷阱状态密度和出色的底物覆盖率的大型,整体晶粒。尤其是,共同添加剂在结晶过程上改善了阳离子的分散,从而抑制了通过间隔阳离子的聚集形成的低N相并加速了高N期的形成。
1。引入等离子体中的电子速度分布函数(VDF)很少是麦克斯韦人。1,2完全离子的空间等离子体和弱离子的气体排放等离子体有几个原因。在第一种情况下,磁化电子通常部分限制在血浆产生的电场上,受到波粒相互作用和湍流,这些相互作用和湍流在带电颗粒之间的库仑相互作用上占主导地位。在第二种情况下,外部电场和中性等离子体物种的碰撞会在大多数低温有限的等离子体中产生特殊的非平衡条件。在本文中,我们讨论了在等离子体中形成弱耦合电子基的典型情况,并显示了电子动力学模拟的示例。
微型真空电弧推力器是微型和纳米卫星上推进系统的候选系统之一。它们具有多种优势,例如比冲高、使用密度高、体积小的固体推进剂而不必使用储罐和压力系统,以及包含电子和离子的等离子体膨胀而不必使用中和阴极。多电荷离子的出现是解释离子以极高速度存在的原因之一。本文重点介绍了真空电弧推力器的简化一维模型,考虑了真空电弧推力器典型条件下阴极表面的电子和原子发射以及极间气体的分解。对于钛阴极材料,结果表明,逐步电离是理解真空电弧条件下观察到的高等离子体的关键因素。
电解质在锂电池的正极和负电极之间进行离子,这是锂离子电池的保证,以获得高压和高能量密度的优势,因此电解质的低粘度可以使锂离子的移动。如果粘度高,它将形成一定的内部电阻,从而防止锂离子的运动。温度低时,电池会预热,因此电池内电解质的粘度随温度的变化而上升,从而提高了电池的充电和放电性能。因此,为了满足车辆的电源需求,有必要预热电池。但是,当温度低于25度以下时,锂电子将被冷冻,导致未能启动汽车。在这种情况下,车辆将事先为电池充电,以延长充电时间,并保证巡航范围。
oak ridge国家实验室工作人员,田纳西州橡树岭化学科学司,田纳西州橡树岭 - 田纳西州橡树岭化学科学司,田纳西州橡树岭分部的副副参谋,研究重点:与核医学相关的未倍增放射性离子的协调化学;开发用于靶向放射性核素治疗的新螯合平台;关键材料的分离和恢复(例如,稀土元素);阴离子认可康奈尔大学2016 - 2019年化学和化学生物学系,纽约州伊萨卡顾问:贾斯汀·J·威尔逊教授:贾斯汀·J·威尔逊教授研究重点:用于选择性和稳定的重金属离子的配体开发,重金属离子的选择性和稳定螯合(例如,BA 2+,BA 2+,223 RA 2+,LN 3+,LN 3+,LN 3+,LN 3+,ln 3+),用于诊断和诊断,及其诊断,及其诊断, 2011–2016博士佛罗里达州盖恩斯维尔药物学系药物科学系:肯尼斯·斯隆教授学位论文:帕克森病州立大学的纽约州Potsdam 2009 B.A.生物学,生物学系,纽约州橡树岭国家实验室研究生实习生:
量子态的检测可能涉及该状态的破坏。量子物理定律是目前限制新一代光学原子钟稳定性的一个因素,这可能会重新定义秒,即时间的 SI 单位。解决其稳定性问题的一个潜在解决方案是使用量子纠缠。纠缠允许两个原子或离子表现出彼此相同的属性,而无需物理连接。这意味着可以观察其中一个原子或离子的状态,而不会破坏另一个原子或离子的状态。该项目将使用基于量子纠缠的技术来提高光学原子钟的短期稳定性,超越目前的限制。研究结果将提高基于可扩展纠缠的精密光谱学,并对加速度计、重力仪、陀螺仪和磁力仪等更广泛的量子传感器产生直接影响。