摘要。卫星 NO 2 数据在空气质量研究中的应用日益表明,需要进行具有更高空间和时间分辨率的观测。NO 2 昼夜循环研究、全球郊区观测和排放点源识别是一些重要应用的例子,而这些应用无法在现有仪器提供的分辨率下实现。提高空间分辨率的一种方法是减少检索所需的光谱信息,从而允许使用传统 2-D 探测器的两个维度来记录空间信息。在这项工作中,我们研究了使用 10 个离散波长和成熟的差分光学吸收光谱 (DOAS) 技术来检索 NO 2 斜柱密度 (SCD)。为了测试这个概念,我们使用了来自世界各地不同地区的单个 OMI 和 TROPOMI 1B 级扫描带,这些扫描带既包含清洁区域,也包含严重污染区域。为了离散化数据,我们模拟了一组以 NO 2 吸收截面的各个关键波长为中心的高斯光学滤波器。我们使用 DOAS 算法的简单实现对离散数据进行 SCD 检索,并将结果与相应的 2 级 SCD 产品(即 OMI 的 QA4ECV 和 TROPOMI 业务产品)进行比较。对于 OMI,我们离散波长检索的总体结果与 2 级数据非常吻合(平均差异 < 5 %)。对于 TROPOMI,一致性很好(平均差异 < 11 %),由于其信噪比更高,不确定性较低。这些差异主要可以通过检索图像的差异来解释
3. LDD-IFE 技术问题——有几种方法可以提供 LPI 抑制和辐射均匀性所需的带宽。每个激光源可能产生所需的全部带宽、部分带宽或跨越所需光谱的离散波长。宽带非相干系统因过大带宽导致的时间调制而引发激光损伤问题,而宽带频率上转换为紫外波长具有挑战性,因此在离散波长下工作的激光器应该更简单、更有优势,尽管考虑到 IFE 反应堆容器可用立体角的实际限制,可能需要光谱光束组合 [19] 将所有激光辐射传送到目标。基于 OPA 或激光的系统可以为 LDD-IFE 提供所需的宽带放大。
摘要 癫痫是个体的一种慢性发作状态。脑细胞群反映出异常的电活动。脑电图 (EEG) 是一种监测大脑活动和诊断神经系统疾病的常用工具。在处理具有超高维度的复杂变换特征并从 EEG 中提取最佳特征时,对癫痫和非癫痫数据进行分类是一项具有挑战性的任务。本文提出了一种新的混合方法来选择最佳特征,该方法涉及粒子群优化 (PSO) 算法、新开发的概率粒子群优化 (PPSO) 算法和顺序差分进化 (SDE) 算法。癫痫患者的 EEG 数据已用于评估该方法。使用离散波长变换提取特征。PSO、PPSO 和 SDE 从 EEG 的特征空间中选择最佳特征。进一步使用不同的分类器评估这些最佳特征的性能。比较了 PSO、PPSO 和 SDE 的性能。本文对生物启发算法对脑电信号特征优化的重要性进行了广泛的研究。在所有分类器中,支持向量机 (SVM) 表现优异,在第 100 个周期时,PPSO 的准确率为 97.74%,SDE 的准确率为 98.34%。这表明最佳特征选择提高了分类器的性能。