植物免疫是一个多层次的过程,包括识别病原体的模式或效应物以引发防御反应。这些包括诱导通常会限制病原体毒力的多种防御代谢物。在这里,我们在代谢物水平上研究了大麦根与真菌病原体根腐病菌 ( Bs ) 和禾谷镰刀菌 ( Fg ) 之间的相互作用。我们发现大麦烷是一组以前未描述过的具有抗菌特性的罗丹烷相关二萜类化合物,是这些相互作用中的关键参与者。Bs 和 Fg 感染大麦根会引发 600 kb 基因簇中的大麦烷合成。在酵母和本氏烟中异源重建生物合成途径产生了几种大麦烷,包括功能最丰富的产品之一 19-b-羟基大麦三烯酸 (19-OH-HTA)。该簇二萜合酶基因的大麦突变体无法产生大麦烷,但出乎意料的是,Bs 的定植率却降低了。相比之下,另一种大麦和小麦真菌病原体禾谷镰刀菌在完全缺乏大麦烷的突变体中的定植率要高 4 倍。因此,19-OH-HTA 可增强 Bs 的发芽和生长,而抑制其他致病真菌,包括 Fg。显微镜和转录组学数据分析表明,大麦烷可延缓 Bs 的坏死营养期。综上所述,这些结果表明,诸如 Bs 之类的适应性病原体可以破坏植物的代谢防御,以促进根部定植。
这项研究的作者是:Grace Sack,题为:使用 CRISPR/Cas9 编辑禾谷镰刀菌,已获批准,符合大学荣誉学位的论文或项目要求 ________ ______________________________________________________ 日期 Tilahun Abebe 博士,荣誉论文顾问 ________ ______________________________________________________ 日期 Jessica Moon 博士,大学荣誉项目主任
摘要:禾谷镰刀菌是一种丝状真菌,是小麦和其他谷类作物赤霉病的病原体,在全球范围内造成了重大的经济损失。本研究旨在利用 CRISPR/Cas9 介导的基因缺失技术研究特定基因在禾谷镰刀菌毒力中的作用。使用 Illumina 测序来表征编辑引起的基因组变化。出乎意料的是,两个分离株中发生了 2 号染色体上 525,223 个碱基对的大规模缺失,包含超过 222 个基因。许多被删除的基因被预测与氧化还原酶活性、跨膜转运蛋白活性、水解酶活性等基本分子功能以及碳水化合物代谢和跨膜转运等生物过程有关。尽管遗传物质大量丢失,突变分离株在大多数条件下仍表现出正常的生长率和对小麦的毒性。然而,在高温和某些培养基中,生长率显著降低。此外,还进行了使用夹子浸种法、种子接种法和头点接种法的小麦接种试验。未观察到毒性的显著差异,这表明这些基因不参与感染或替代补偿途径,并允许真菌在基因组大量缺失的情况下保持致病性。
使用成簇的规律间隔短回文重复序列 (CRISPR)-CRISPR 相关蛋白 9 (Cas9) 系统进行基因组编辑极大地促进了真菌病原体的遗传分析。穗枯萎病真菌禾谷镰刀菌会给具有重要经济价值的谷类作物造成毁灭性损失。最近开发用于禾谷镰刀菌的 CRISPR-Cas9 系统使得基因组编辑更加高效。在本研究中,我们描述了一种基于 CRISPR-Cas9 的基因组编辑工具,用于将预组装的 Cas9 核糖核蛋白 (RNP) 直接递送到禾谷镰刀菌的原生质体中。使用 RNP 显著增加了转化子的数量和成功用选择标记替换目标基因的转化子的百分比。我们表明,由 Cas9 核糖核蛋白介导的单个双链 DNA 断裂足以实现基因删除。此外,短同源重组仅需要靶基因两侧 50 个碱基对区域。Cas9 RNPs 的高效率使得大规模功能分析、必需基因的鉴定和基因删除成为可能,而这些是传统方法难以实现的。我们期望我们的方法将加速禾谷镰刀菌的遗传学研究。
