在亚利桑那州立大学生物建筑研究所的传染病与疫苗学中心的首席研究员Cheryl Nickerson博士的这一基础破裂研究是感染活生物体以实时研究宿主病原体相互作用的第一个实验。本研究通过感染模型有机体C.秀丽隐杆圆形蠕虫,用沙门氏菌病原体感染微重力对人免疫系统的影响,从而导致人类食物中毒。学生将参与与尼克森博士的数据库分析,并将其数据提交,以便将其包含在她的数据库中。
动物的神经系统随着其身体从出生到成年而生长及其行为成熟1-8的变化。跨连接组的电路重塑的形式和范围是未知的3,9-15。在这里,我们使用了串行部分电子显微镜来重建跨产后阶段的八个等源性Caenorhabditis秀丽隐杆菌个体的全部大脑,以研究其随着年龄的变化。从出生到成年,大脑的整体几何形状可以保留,但是在这种一致的支架上出现了化学突触连通性的实质变化。比较个体之间的连接素,揭示了连通性的实质性差异,使每个大脑都部分独特。比较跨成熟的连接组揭示了不同神经元之间的一致接线变化。这些变化改变了现有连接的强度并创建新的连接。网络中的集体变化改变了信息处理。在开发过程中,维持中央决策电路,而感觉和电路通路基本上进行了重塑。随着年龄的增长,大脑逐渐变得更加喂食和明显的模块化。因此,发育连接组学揭示了脑成熟的原则。
寄生线虫对人类和动物的健康构成了重大威胁,并在农业部门造成经济损失。使用驱虫药物(例如伊维菌素(IVM))来控制这些寄生虫的使用导致了广泛的耐药性。识别寄生线虫中抗药性的遗传标记可能具有挑战性,但是秀丽隐杆线虫的自由生活的Nema-Tode Caenorhabditis提供了合适的模型。在这项研究中,我们旨在分析成人c的转录组。秀丽隐杆线虫蠕虫暴露于驱虫药伊维菌素(IVM)的N2菌株,并将其与抗性菌株DA1316和最近确定的杀伤蛋白定量性状基因座(QTL)进行比较。 RNA并在Illumina NovaseQ6000平台上对其进行了排序。使用内部管道确定差异表达的基因(DEG)。将DEG与先前关于IVM抗性c的微阵列研究的基因进行了比较。秀丽隐杆线虫和Abamectin-QTL。我们的结果显示,N2 c中不同基因家族的615摄氏度(183个上调和432个下调基因)。秀丽隐杆线伤。31与DA1316菌株的IVM成年蠕虫的基因重叠。我们确定了19个基因,包括叶酸转运蛋白(Folt-2)和跨膜转运蛋白(T22F3。11),在N2和DA1316菌株中表现出相反的表达,被认为是潜在的候选物。此外,我们编制了进一步研究的潜在候选列表,包括T型钙通道(CCA-1),氯化钾共转运蛋白(KCC-2),以及其他映射到Abamectin-QTL的基因,例如谷氨酸门控通道(GLC-1)。
au:PleaseconfirmthatalleadinglevelsarerepressedCorrected:动物在为增长和繁殖的重要资源提供至关重要的资源之前,整合了发育和营养信号;但是,感知和响应这些输入的途径仍然很少理解。在这里,我们证明了与哺乳动物有丝分裂原激活的蛋白激酶具有相似性的DRL-1和FLR-4在C中保持脂质均匀稳定。秀丽隐章肠。DRL-1和FLR-4在质膜的蛋白质复合物中起作用,以促进发育,因为DRL-1或FLR-4中的突变赋予了缓慢的生长,体积小,体积小和脂质稳态受损。为了确定反对DRL-1/FLR-4的因素,我们对DRL-1突变体表型的抑制剂进行了前遗传筛选,并在FLR-2和FSHR-1中鉴定了突变,该突变分别编码了Folli-Cle刺激激素及其假定的G蛋白蛋白与蛋白质与蛋白质耦合的受体的正交。在没有DRL-1/FLR-4的情况下,神经元FLR-2通过肠道FSHR-1和蛋白激酶A的信号传导来限制生长。此外,我们表明,通过DRL-1和FLR-2的相反信号传导坐在TIR-1寡聚,这调节了下游p38/ pmk-1活性,脂质稳态和发育。最后,我们在肠道中确定了发育转录因子PHA-4/FOXA的令人惊讶的非CA非ca词作用,在该因素限制了响应受损的DRL-1信号传导时,它限制了生长。我们的工作揭示了一个复杂的多组织信号网络,该网络会在p38信号上收敛,以在开发过程中保持体内平衡。
古老的益生菌饮料康普茶(KT)的普及部分原因是其所谓的健康益处,其中包括防止代谢性疾病的保护;但是,这些主张尚未经过严格测试,并且尚不清楚宿主对益生菌的基础机制。在这里,我们建立了一种可再现的方法来维护c。秀丽隐杆线虫专门由康普茶相关的微生物(KTM)组成,它反映了发酵文化中发现的微生物群落。kt微生物可靠地定居KTM喂养的动物的肠道,并赋予正常发育和繁殖力。有趣的是,消耗KTM的动物在总脂质储存和脂质液滴尺寸中显示出明显的减少。我们发现,减少的脂肪积累表型不是由于营养吸收受损而导致的,而是由于宿主的肠道中编程的代谢反应而维持的。ktm消耗触发了核心脂质代谢途径内的广泛转录变化,包括上调在脂肪噬菌期间诱导的一组溶菌丝脂酶基因。升高的溶酶体脂肪酶活性,再加上脂质液滴生物发生的降低,是宿主脂质含量降低所必需的。我们提出,KTM消耗刺激了C中的类似禁食的响应。秀丽隐杆线肠道通过重新启动转录程序来促进脂质利用。我们的结果提供了有关康普茶茶中的益生菌如何改造宿主代谢以及这种流行饮料如何影响人类新陈代谢的机械见解。
免疫系统不断与病原体诱导的压力作斗争,这通常会以物种特异性的方式导致免疫基因家族的进化膨胀。与单个哺乳动物的pals ortholog相比,PALS基因家族在秀丽隐杆线虫基因组中扩展到39个成员。我们以前的研究表明,该家族的两个成员PALS-22和PALS-25是控制细胞内病原体反应(IPR)的拮抗旁系同源物。IPR是一种保护性转录反应,在两种分子不同的天然细胞内病原体C感染后,它会激活。秀丽隐杆线虫 - 来自微孢子虫门的Orsay病毒和真菌Nematocida parisii。在这项研究中,我们确定了PALS-17的先前未表征的成员,作为新近描述的IPR负面调节剂。PALS-17突变体显示IPR基因表达的组成型上调,对细胞内病原体的免疫力增加以及发育和繁殖受损。我们还发现,另外两个先前未表征的PALS基因PALS-20和PALS-16是IPR的阳性调节剂,在PALS-17的下游作用。这些积极的调节剂逆转了PALS-17对IPR基因表达,免疫力和发育的影响。我们表明,阴性的IPR调节蛋白PALS-17和阳性的IPR调节蛋白PALS-20共定位在肠上皮细胞的顶部和顶部,这是IPR诱导病原体的感染部位。秀丽隐杆线。总而言之,我们的研究表明,来自扩展的PAL基因家族的几个PAL基因作为ON/OFF开关模块的作用,以调节c中自然细胞内病原体之间的生物发育与免疫之间的偏见。
神经退行性疾病通常以线粒体功能障碍为特征。在阿尔茨·海默(Alz Heimer)氏病中,异常的tau磷酸化破坏了线粒体,这是一种从线粒体网络中选择性去除的质量控制程序。发生这种情况的确切机制尚不清楚。以前,我们表明在THR-231突变为谷氨酸的Tau模仿疾病早期表达的阿尔茨海尔族人相关的磷酸 - 磷酸 - 磷酸 - 磷酸 - 磷酸 - 磷酸 - 磷酸 - 磷酸 - 有选择地抑制了秀丽属caenorhabditis elegans的氧化应激诱导的凝血诱导的丝质。在这里,我们使用永生的小鼠海马神经元细胞系将其扩展到哺乳动物细胞中。具体而言,我们表明在Ser-396/404(EC)或THR-231/SER-235(EM)处的磷酸化Tau部分抑制了线粒体氧化应激的有效诱导剂Paraquat。更重要的是,免疫学和生化方法的结合表明,线粒体受体FKBP8的左旋液在表达EC或EM TAU突变体的细胞中对paraquat的响应显着降低,但在表达野生型Tau的细胞中却没有。相反,在存在Wildtype Tau和Tau突变体的情况下,少量处理导致线粒体受体Fundc1和BNIP3的水平降低。有趣的是,FKBP8在氧化应激诱导的线粒体期间非批量交通于内质网,我们的结果支持了一个模型,在这种模型中,这种运输受到疾病相关的TAU的影响,也许是通过直接相互作用的。我们对阿尔茨海默氏病中TAU病理学的分子机械性提供了新的见解,并突出了FKBP8受体,这是缓解神经退行性疾病中线粒体功能障碍的潜在靶点。
对监管机构负责评估风险的许多化学物质中很少有人对发育神经毒性(DNT)进行了仔细的测试。为加快测试工作以及减少脊椎动物的使用,付出了巨大的努力,致力于替代实验室模型进行测试。DNT的主要机制是由于神经发育过程中化学暴露而改变的神经元结构。Caenorhabditis秀丽隐杆线虫是神经生物学家和发育生物学家广泛研究的线虫,在较小程度上由神经毒理学家进行了研究。秀丽隐杆线虫中神经系统的发育轨迹很容易可视化,通常完全不变并且完全映射。因此,我们假设秀丽隐杆线虫可能是一个强大的体内模型,以测试化学物质,以改变神经元结构的发育模式。为了测试这是否可能是真的,我们开发了一种新型的秀丽隐杆线虫DNT测试范式,其中包括整个发育中的暴露,检查所有主要神经递质神经元类型以进行建筑改变,并测试针对多巴胺能,胆碱能和谷氨酸氨酸性功能的行为。我们使用这种范式来表征早期暴露于发育神经毒性铅,镉和苯并(A)pyrene(BAP)对多巴胺能,胆碱能和谷氨酸氨基氨基氨基氨基甲基体系结构的影响。我们还评估了暴露是否会改变神经元规范,这是通过表达特定神经递质诊断的表达来评估的。我们尚未确定我们检查的神经元明显的神经递质类型发生的情况,但许多神经元形态发生了变化。我们还发现,在秀丽隐杆线虫中,神经元特异性的行为是针对人群中期的秀丽隐杆菌中的,在早期阶段的形态神经退行性变化。功能变化与我们观察到的神经元类型的形态变化一致。我们确定了与哺乳动物DNT文献中报道的变化一致的变化,从而加强了秀丽隐杆线虫作为DNT模型的案例,并进行了新的观察结果,应在以后的研究中进行跟进。
周黄 a 、陈成汉 a 、阿卜杜萨拉姆·阿卜都克里木 a 、子浩博 a 、陈伟 a 、陈迅 a,t 、陈云华 h 、陈成 o 、程兆堪 p 、崔相宜 m 、范英杰 q 、方德清 r 、毛昌波 、付孟廷 g 、耿力生 b,c,d 、卡尔·吉博尼 a 、顾林辉 a 、郭旭源 a 、何昌达 a 、何金荣 h 、黄迪 a 、黄彦林 s 、侯汝泉 t 、吉向东 l 、军永林 、李晨翔 a 、李家福 、李明传 h 、林淑 n 、李帅杰 m 、清林 e,f 、刘江来 a,m,t,1 、陆晓英 j,k 、罗灵隐克,罗云阳 f , 马文波 a , 马尔玉刚 , 毛亚军 g , 孟跃 a,t , 宁旭阳 a , 宁春齐 h , 钱志成 a , 香香任 j,k , Nasir Shaheed j,k , 尚松 h , 尚晓峰 a , 沉国芳 b , 林斯 a , 孙文亮 h , 谭安迪 l , 陶毅 a,t , 安庆王 j,k , 王萌 j,k , 王秋红 r , 王少波 a,1 , 王四光 g , 王伟 o , 王秀丽 n , 王周 a,t,m , 魏月欢 p , 吴萌萌 o , 吴伟豪 a , 夏经凯 a , 肖孟娇 l , 肖翔 o , 谢鹏伟 m , 严彬彬 a,t , 严希宇 s ,杨吉军 a 、杨勇 a 、于春旭 q 、袁居民 j,k 、袁哲 r 、曾新宁 a 、张丹 l 、张敏珍 a 、张鹏 h 、张世波 a 、张舒 o 、张涛 a 、张迎新 j,k 、张媛媛 m 、李赵 a 、郑其斌 s 、周吉芳 h 、宁周 a,t, * ,周小鹏 b , 周勇 h , 周玉波 a