致谢 非常感谢 David Aiken 在准备本数据表时提供的帮助和指导。参考文献 1) TM 9-1985-4/TO 39B-1A-11 日本爆炸性军械,第 1 部分,陆军部技术手册/空军部技术命令,1953 年 3 月。2) OPNAV 30-38M 日本爆炸性军械手册,海军部,1945 年 8 月 15 日(Jim Lansdale 复印了部分手册)。3) David Aiken,著名的珍珠港历史学家,私人通信。4) “日本雷鱼”,John De Virgilio 著,《海军历史》,1991 年冬季。5) Bryan Wilburn 在《Pri-Fly》(华盛顿特区 IPMS 分会出版物)中,Urs Bopp 的复印件,日期不详,但估计约 1985 年。6) 《世界著名飞机》,#154,1986 年 3 月。7) 《世界著名飞机》(新系列),#32,1992 年 1 月。8) 《朝日杂志》,第3 期。2。9) Ian Baker 的《航空历史彩色书籍》,第 154 卷。36、40 和 41。10) J-aircraft.com 帖子,多种多样
与信息安全性应用程序有关的机器学习简介,第二版,马克邮票,查普曼和霍尔/CRC,2022。我最喜欢的作者之一及时的书。《错误猎人的日记:通过软件安全野外的导游》,Tobias Klein,No Starch Press,2011年。许多有趣的脆弱代码实例。http://reversingproject.info/的软件逆向工程(SRE)。该网站是由一名前硕士学生创建的,其中包含许多良好的信息和解决方案的详细练习。网络安全:公共世界中的私人通信,第二版,Charlie Kaufman,Radia Perlman和Mike Speciner,Prentice Hall,2002年,ISBN:0-13-046019-2。本书提供了一些密码学基础知识和几种安全协议的出色覆盖范围。安全工程:建筑可靠的分布式系统指南,第三版,罗斯·安德森(Ross Anderson),约翰·威利(John Wiley&Sons,Inc.),2020年。这是一本非常出色的书籍,用于概述安全性,但通常不太关注或技术详细。
课程描述 量子香农理论:量子信道和纠缠;密集编码、隐形传态、量子压缩和量子容量定理。量子通信中的未解决的问题。 学习目标 完成本课程的学生将了解量子香农理论的基本概念和数学技术。他们将了解量子信息理论的基本协议:直接编码、纠缠分布、超密集编码和量子隐形传态。将定义和解释各种数学工具,包括各种距离测量和熵量。他们将了解量子协议中使用的资源:量子和经典信道(无噪声和有噪声)、共享纠缠、共享随机性和私人通信。他们还将了解这些资源之间的权衡,以及量子信息论中各种信道容量的定义。他们将了解围绕这些容量的许多计算困难,以及我们目前对量子信息论的理解中存在的未解决的问题。建议准备:需要具备丰富的复杂线性代数和概率论工作知识,例如从高级本科课程(MATH 225、MATH 307、EE 364 等级别)获得的知识。先前掌握量子信息知识(例如来自 EE 520 或 EE 514 的知识)会很有帮助。
摘要:量子密钥分发 (QKD) 可实现具有信息理论安全性的私人通信。自由空间光通信允许人们实施 QKD,而不受光纤网络的限制,例如光纤中传输损耗的指数级增长。因此,通过卫星链路进行自由空间 QKD 是一种有前途的技术,可提供长距离量子通信连接。在自由空间 QKD 系统中,背景光是噪声的主要来源,必须通过光谱、空间和时间滤波来抑制背景光,以达到足够低的量子比特误码率 (QBER)。只有这样才能成功交换量子密钥。为了能够定义自由空间 QKD 系统的要求,必须更仔细地检查背景光。目前的考虑集中在无云的天空和乡村环境中。当天空部分有云时,自由空间 QKD 也会发生,最有可能也在城市环境中发生。这里概述了下行链路场景中背景光的物理原因。此外,还推导出了具有偏振编码量子位的诱饵态 BB84 协议的 QBER 与背景光之间的关系,以给出依赖关系的示例。此外,还展示了一个实验研究背景光的装置。在慕尼黑(德国)附近的 Oberpfaffenhofen 使用该装置在 C 波段获取测量数据。测量数据用于验证背景光模拟工具。结果强调模拟工具足以应对晴朗天空场景。
1。Wenliang DU,计算机安全:一种动手方法,CreateSpace独立出版平台,2017年2。马特·毕晓普(Matt Bishop),计算机安全:艺术与科学,艾迪生·韦斯利(Addison-Wesley);第二版,2018年。4。Ross J. Anderson,安全工程:建筑可靠的分布式系统指南,Wiley,第3版,2020年5。William Stallings,密码和网络安全:原理与实践,第5版,Prentice Hall,2010年。6。Dieter Gollmann,计算机安全,Wiley,2011年7。6。Charlie Kaufman,Radia Perlman和Mike Speciner,网络安全:公共世界中的私人通信,Prentice Hall,2002年。8。安全与隐私研讨会的会议记录9。USENIX安全研讨会的会议记录10。ISOC网络和分布式系统安全研讨会的会议记录11。 ACM计算机和通信安全会议会议记录12。 IEEE/IFIP国际可靠系统和网络国际会议论文集13。 年度计算机安全应用程序会议会议会议14。 欧洲计算机安全研究研讨会论文集ISOC网络和分布式系统安全研讨会的会议记录11。ACM计算机和通信安全会议会议记录12。IEEE/IFIP国际可靠系统和网络国际会议论文集13。年度计算机安全应用程序会议会议会议14。欧洲计算机安全研究研讨会论文集
摘要。变形加密的概念(Persiano,Phan和Yung,Eurocrypt '22),旨在使私人通信能够在中央权威(Henceforth称为独裁者)大量控制的环境中,他们可以获取用户的秘密密钥。从那时起,各种作品就在几个方面(包括其局限性)提高了我们对AE的理解。在这方面,最近的两部作品构建了各种抗变形的加密(是)方案,即,最多允许Covert通信的O(log(log(λ))位的方案。但是,这些结果仍然不令人满意,每个结果都至少带有以下问题之一:(1)使用加密重型锤子(例如,难以区分性混淆(IO)); (2)滥用原始定义以定义过于强大的独裁者; (3)依赖随机甲骨文模型(ROM)。尤其是,ROM中的证据是有争议的,因为它们无法解释用于实例化随机Oracle的哈希函数的变形方案。在这项工作中,我们克服了所有这些局限性。首先,我们描述了一种耐药的加密(是)方案,仅依靠公开的加密和极其有损函数(ELFS)来实现实用性,这都是从(指数)DDH假设中得知的。进一步假设独特的Nizks(从IO中知道),我们提供了另一种结构,我们后来用它来意识到第一个确定性是:也就是说,一种同时达到对每个可能的变形安全水平的变形抗性水平的单一方案。
引言 2023 年是射电天文学诞生 90 周年:人们普遍认为,这个天文学大分支学科的“诞生”源于 1933 年 5 月 5 日《纽约时报》头版的一篇专栏文章,文章介绍了卡尔·詹斯基 [1] 发现“宇宙噪声”。自 20 世纪 60 年代中期以来,在这一时期的近三分之二的时间里,一种名为甚长基线干涉测量 (VLBI) 的射电天文学技术在观测天体时(前提是它们在电磁波谱的无线电领域发射)的角分辨率方面保持着领先地位。1967 年,三个美国小组和一个加拿大小组首次实验演示了这项技术(见 [2] 第 1.3.14 节及其中的参考资料)。两年前 [3] 中就曾讨论过这项技术。有趣的是,后者在 1963 年的草案版本中包含一段话,提到了在航天器上放置无线电干涉仪天线的可能性,目的是实现地面仪器根本不可能达到的角分辨率。由于当时苏联对所有涉及太空探索的主题实行严格审查,这一段话被从最终版本中删除。列夫·A·列别捷夫 (1987)、根纳迪·肖洛米茨基 (1991)、尼古拉·卡尔达肖夫 (2016) 和列昂尼德·马特维延科 (2018) 在四次私人通信中独立向作者证实了后者。因此,如果考虑到 20 世纪 60 年代上半叶首次提到太空 VLBI,那么到现在为止,这个话题确实有着一段可观的历史。对于反射天线(广泛使用的专业俚语是“碟形天线”),分辨率由衍射极限 λ/D 定义,其中 λ 是波长,D 是反射器的直径,就像“传统”光学天文学的情况一样。对于典型的无线电领域分米到米波长,直径数十米的实惠碟形天线可以达到数十角分的角分辨率,远低于地球光学望远镜的典型角分辨率,后者为秒级
在上一期的 Tech 杂志中,我们发表了一封大约 150 位教授写给 Rosenbaum 校长的私人信件。这封信不打算与教职员工以外的人分享,信中表达了对应届本科生学业成绩的不满,并主张结束招生办公室的标准化考试禁令。我们发表这封信的目的是确保学生也能参与到这场对话中,因为很明显,如果不这样做,教职员工就没有这样做的打算。令人遗憾的是,这封信最终成为了他们观点的公开方式;可能各方都会同意,它的写作质量和信息呈现方式都很低劣且无效。同样,这封信是私人通信,不打算发表。然而,当我们在 2 月份联系这封信的五位作者,要求他们提供论点摘要或公开声明时,Tech 杂志却沉默了。 John Dabi-ri 教授和 Paul Asimow 教授慷慨地分享了他们对这封信的看法(见 1 月 16 日和 2 月 6 日的 Tech 杂志),但全文仍然是所有签名者观点的最佳体现。与 Tech 杂志分享这封信的人要求我们不要印刷签名名单或个别教授的附加评论;这个问题比我们任何一个人都重要,点名批评特定的人会适得其反。当然,这封信提供了电气工程选修课 EE44 和 EE55 的两门必修课的数据。具体来说,它包含了过去两年课程的(匿名)考试成绩和成绩统计数据。回想起来,尤其是考虑到电气工程专业的班级规模很小,我们在没有审查班级姓名或征得所涉学生许可的情况下发布这些内容是不负责任的。我谨代表理工学院公开向这些班级的学生道歉,因为这是他们的错误判断。我很高兴他们中的一些人能够对这封信做出回应,这封信可以在本期找到。从我与他们的交谈中,听起来我们确实成功地在学生和教师之间建立了有意义的对话,至少在电子工程系是这样。
密码学一直是人类的长期痴迷,可以追溯到几个世纪。从古老的象形文字到现代数字加密,人们一直在寻求确保和破译信息的方法。在这一任务中的一个关键时刻是凯撒密码的发展,以朱利叶斯·凯撒(Julius Caesar)的名字命名,后者在他的私人通信中巧妙地利用了它。Caesar Cipher通过将字母的每个字母移动一个固定数字来工作,从本质上将原始消息转换为炒版的版本,该版本使其内容物保持在不需要的收件人中。尽管按照当今的标准很简单,但凯撒密码在加密技术的发展中标志着一个重要的里程碑,并为更复杂的加密方法奠定了基础。通过探索这个密码的工作方式,我们可以深入了解密码学的基本原理,并了解基本思想如何导致复杂的通信安全系统。古代代码的艺术在于简单性,其中一种方法是凯撒密码。这种技术在整个历史上使用,涉及三个转移,使其易于理解和应用。要开始,选择一个偏移号 - 在此示例中,让我们使用三个。这意味着每个字母都会向下移动三个位置。以“ Hello”之类的简单消息。这是我们要加密的原始消息。现在,将三个转移应用于每个字母:“ h”变为“ k”,“ e”变为“ h”,“ l”变为“ o”,依此类推。每个字母通过三个斑点跳下字母。应用此班次后,我们的消息“ Hello”变成了“ Khoor”。这是密文 - 我们原始消息的加密版本,现在隐藏在保密中。可以将密文可以牢固地发送给不知道Shift键的接收者。在不知道的情况下,对密文的解密将是具有挑战性的。解密,收件人通过将每个字母的三个位置从“ khoor”转移回“ Hello”来扭转此过程。这种从明文到密文的转变,然后又是凯撒密码工作原理的本质。虽然不反对现代的密码分析方法,但Caesar Cipher可以作为引入加密原理和秘密交流艺术的工具。凯撒密码:密码学的一台标准,理解拦截器是否猜测凯撒密码的钥匙,它们可以轻松地解密信息,从而使其成为一种不太确定的通信方法。尽管有这一限制,凯撒密码仍然是说明基本加密和解密原理的宝贵工具。它的简单性使其成为那些冒险进入密码科学的人的绝佳基础。**探索变化**虽然经典的凯撒密码使用固定的三个移动,但改变了这种转变可以增强其安全性。通过调整偏移值,密码变得对拦截更具抵抗力,因为意外接收者必须破解模式。探索不同的转变揭示了这种古老的加密技术的灵活性和适应性。不同的**偏移值**一个一个移动的移动将“ A”移至“ B”,而在字母内的25个换档,将“ A”移至“ Z”。每个移位值都会产生独特的加密模式,展示了自定义的潜力。向前移动的字母向下移动字母,而向后移动将它们向上移动,增加了另一层复杂性。**使用随机移动或单个消息中多个偏移的随机和多个偏移**可能会显着使解密过程复杂化。例如,每个字母可能会以不同的数量移动,这是由仅向发件人和接收者知道的秘密模式决定的。这种方法增加了一层阴谋,并充当了更高级加密概念的桥梁。**旋转偏移**另一种变化涉及旋转偏移,在每个字母加密后的值变化。例如,首字母可能会在一定数量的班次之后向后移动一个,第二个字母,第二个字母。这些修改表明,即使在凯撒密码的约束中,创造力和增加的复杂性也可以得到。**优势和局限性**虽然Caesar Cipher由于易于解密而不是安全通信的强大工具,但它仍然是理解基本加密原则的绝佳操场。它的简单性使其成为那些寻求了解加密和解密技术的人的可访问切入点。Caesar Cipher是密码学的基本工具,可介绍更广泛的加密原理背景。它的简单性使其成为基本概念(例如替代,转移和加密方法)的绝佳教育资源。然而,它脆弱的隐式分析和缺乏关键复杂性使其不切实际地确保敏感信息。尽管如此,它还是对更先进的技术的垫脚石,并且在日常生活中仍然是一种基本加密和教育目的的工具。Caesar Cipher的局限性提供了一个宝贵的例子,说明了设计安全的加密方法所面临的挑战,使其成为秘密交流历史的一个启发性方面。Caesar Cipher提供了一个简单而令人着迷的挑战,该挑战已在益智游戏,逃生室和寻宝游戏中使用,以将历史阴谋与加密难题相结合。对于低级安全情况,这种古老的加密方法仍然可以用于基本的编码任务,例如创建简单的密码或编码Trivia答案。密码的文化意义和易用性使其成为讲故事的人和艺术家的诱人选择。凯撒密封件还可以轻柔地介绍编码概念和算法思维,对程序员和计算机爱好者。以编程语言实现密码可能是将历史知识与实际编码技能相结合的初学者友好项目。尽管其保护国家秘密的能力有限,但凯撒密码的遗产仍是一种教育工具,娱乐性难题和通往加密世界的门户。将其与其他加密技术进行比较突出了加密方法的演变,并强调了数字时代必不可少的安全性和复杂性的进步。像简单的替代密码一样,凯撒密码用另一个字符代替每个字符,但使用统一的偏移而不是复杂的映射。此方法比现代加密技术更容易受到频率分析的影响。threstose cipher在明文中重新排列字母,创建了不同级别的复杂性,可以将其与替换方法结合使用,以提高安全性。Vigenère密码是凯撒密码的演变,使用了基于关键字字母的多个凯撒密码。这种多性化方法大大提高了复杂性和安全性,从而使其不易受到简单的密码分析的影响。对称键加密采用AE等技术,利用单个键进行加密和解密。这些算法在二进制数据上运行,使其比凯撒密码更安全,适合快速加密大量数据。公钥加密使用单独的密钥 - 公共加密和私有键盘进行解密。此方法对于确保Internet通信(包括文件传输和数字签名)至关重要。将这些高级技术与凯撒密码进行比较,突出了其简单性和加密实践中的重大进步。虽然凯撒密码为理解基本加密概念的基础奠定了基础,但现代方法已扩展了这些原则,以满足日益数字世界中安全沟通的需求。与凯撒密码互动,互动练习可能是掌握其力学的有趣而实用的方法。从简单角色转移到复杂算法的演变反映了计算能力的进步以及对更强大,更安全的加密解决方案的增长需求。这些练习包括手动加密和解密,创建使过程自动化的程序,破坏密码而不知道密钥,编程密码,探索变化和小组练习。简单的密码仍然很重要:在当今的高级加密时代,凯撒密码的持久意义很容易忽略凯撒·密码(Caesar Cipher)等简单密码的重要性。但是,这些基本的加密方法仍然以各种方式相关。历史上将像凯撒密码这样的古代密码的使用背景下,可以更深入地了解它们的意义和局限性。互动练习提供了一种动手学习的方法,可以学习凯撒密码,而不是理论上的理解到实际应用。简单的密码是教育工具,提供了对安全通信的复杂性和挑战的见解。在一个以复杂的加密算法为主的时代,简单密码的未来,像凯撒密码这样的简单密码的作用和未来似乎尚不清楚。但是,这些基本的加密方法仍然在几种方面相关。他们为学生和初学者提供了一种清晰而有形的方式,以掌握加密和解密的基本原则。教育价值凯撒密码和类似的简单密码是密码学的基本教学工具。它的简单性和历史背景使其为这些目的而具有吸引力。,他们通过为学生和初学者提供了一种清晰而有形的方式来理解更复杂的系统的基础,以掌握加密和解密的基本原理。概念理解简单的密码体现了密码学的基本概念,例如密钥管理,保密的重要性以及对各种攻击的脆弱性。了解这些密码提供了有关加密方法如何发展以应对日益严重的安全挑战的历史观点。算法思维简介实现诸如凯撒密码之类的简单密码的概论对于个人学习编程或算法问题解决的绝佳练习。它弥合了理论概念与实际应用之间的差距,从而促进了逻辑思维和编码技能。文化和娱乐用途Caesar Cipher继续在文化和娱乐环境中找到景点,例如解决难题,游戏和讲故事。启发安全意识理解像凯撒密码这样的密码的基础知识可能是踏板的石头,以欣赏日常数字交互中强大加密的重要性。持续的相关性是历史文物和替代密码的基本例子,凯撒密码仍然是密码研究研究中的一个感兴趣的话题。它可以提醒着该领域的起源和加密技术的持续演变。加密方法的演变导致了精致的系统保护我们的数字领域,但它们的主要作用现在在于密码学中的教育和概念意义。总而言之,虽然像凯撒密码这样的简单密码不再用于保护敏感信息,但它们在教育,文化背景和加密世界的介绍中继续发挥重要作用。一种常见的历史密码技术涉及将每个字母的固定位置转移到字母表上,朱利叶斯·凯撒(Julius Caesar)在其私人信件中著名地使用了字母。