合成生物学涉及对病毒、细菌、植物和酵母等生物体的遗传物质进行改造,使其具有新的理想特性。该多学科领域采用 DNA 测序和基因组编辑等生物技术来修改或改造新生物,旨在应对医学、农业、制造业和环境方面的挑战。例如,科学家正在利用合成生物学开发下一代疫苗,改造能够捕获碳的生物,并为农作物创造养分,以最大限度地减少对工业肥料的需求。新的机器人工作流程和机器学习驱动的技术已经出现,以加速和原型化微生物的设计,以应用于生物技术。这种基础设施位于称为生物铸造厂的设施中,其中大部分由制药和生物技术公司私有和运营。为了扩大获得最先进技术、工作流程、流程和知识的渠道,美国国家科学基金会 (NSF) 创建了生物铸造厂计划。 8 月,美国国家科学基金会宣布向加州大学圣巴巴拉分校提供为期六年、总额为 2200 万美元的资助,用于建立极端和特殊真菌、古菌和细菌生物实验室 (ExFAB),该实验室由加州大学圣巴巴拉分校牵头,与加州大学河滨分校 (UCR) 和加州州立理工大学波莫纳分校 (CPP) 合作建立。美国国家科学基金会 ExFAB 生物实验室建立了美国首个生物实验室,专注于生活在极端和不寻常环境中的尚未开发和探索的微生物。“我们非常兴奋,因为这笔资金使我们可以使用以前没有人,特别是学术界无法使用的仪器和基础设施,”ExFAB 主任、加州大学圣巴巴拉分校化学工程和生物工程教授 Michelle O'Malley 表示。“该设施将使我们能够开启新一代合成生物学的前景,该合成生物学专注于从自然界中分离出的极端和不寻常微生物。” “UCSB 在推动多学科、中心级科学方面处于世界领先地位,”UCSB 工程学院院长、电气与计算机工程教授 Umesh Mishra 说道。“我们非常自豪能够主办 NSF ExFAB BioFoundry,因为它首次将我们校园的多项优势整合在一起——从海洋科学到化学工程和生物工程。这项金额巨大的 NSF 奖项提升了我们校园的知名度,并成为 UCSB 继续投资生物技术和生物工程的重点。” Foundry 的研究人员将专注于开发技术,以学习自然界中较为不寻常的微生物,这些微生物被称为“极端微生物”,因为它们不符合实验室中的标准生长习性和培养条件。它们可能有不同寻常的营养需求,或者在极高或极低的温度下生长——甚至在没有氧气的情况下——所有这些都使得它们难以用现有基础设施进行研究。“这些极端微生物违背了我们目前对生物学的理解,但它们仍然具有我们想要用于生物技术的特性和成分,比如分解废物的酶,或可用于制造有价值产品和新药物的途径,”奥马利说道,他开创了一个新的研究领域,通过改造厌氧菌将植物废物转化为更可持续的燃料、化学品或生物基材料。
《中国科技前沿》浙江大学是中国领先的大学之一。《中国科技前沿》系列丛书由浙江大学出版社和施普林格出版社联合出版,出版的作者和编辑均为中国学者和教授,他们都是各自领域的杰出专家和学者。这套丛书将引起研究人员、讲师和研究生的兴趣。《中国科技前沿》旨在介绍中国各个研究领域最新、最前沿的理论、技术和方法。它涵盖了自然科学和技术领域的所有学科,包括但不限于计算机科学、材料科学、生命科学、工程学、环境科学、数学和物理学。
摘要:在热门研究主题中,金融科技在最新的技术应用方面领先于趋势。各种科学中相对较新的新兴范式,例如几何(分形),物理(量子)和数据库系统(分布式分类帐 - 窗口),似乎在很大程度上促进了财务行业的框架更大的变化,这也带来了一些担忧(网络临时)。对这些新模型(及其潜在技术)的合理潜在影响进行一致而广泛的研究,然后通过SWOT分析进行了测试,作为这项研究的主要目的。威胁和机遇始终是由技术进步(革命)的引入而内在驱动的。这项研究证实了信息可用性以及每个发现与科学不同领域的交叉应用的互连的日益增加,这确定了通过经济范式明显的巨大变化所确定的革命的迅速连续。不断增长的计算能力和越来越强大的预测软件的开发导致了竞争性,极具动态性和具有挑战性的系统。在这种情况下,如历史所示,市场集中的可能性很大,但是,只有少数公司(数字巨头)可以负担开发这些技术,从而巩固其优势。
摘要 摘要 增强战略科技力量的一项重要任务是加强国家科研机构建设。本研究从科学发展史和国际发展历程出发,探讨国家科研机构作为国家战略科技力量的发展历程及其特点,探讨中国国家科研机构在国家发展中的作用,总结国家科研机构十年来面向国家需求、面向科技前沿、面向经济主战场、面向人民生命健康等方面取得的成绩和成功经验,并在此基础上对国家科研机构的未来发展提出政策建议。
2011年12月9日,对地观测与数字地球科学中心主任郭华东教授当选为中国科学院地球科学部委员。他是中国科学院对地观测与数字地球科学中心第一位当选的院士,这不仅是他个人的终身荣誉,也是对中国科学院对地观测与数字地球科学中心发展的一大助力。希望郭华东教授的当选能够为中心面向国家战略需求、面向国际科技前沿、面向“创新2020”、推动中国科学院对地观测与数字地球科学中心可持续发展提供有力支撑。30年来,郭华东教授在国内外雷达遥感研究与应用领域发挥了重要的引领作用。建立了无植被沙丘雷达散射几何模型、多频多时相雷达地物识别方法,在空间信息领域进行了开创性研究。他在雷达体制方面的研究,揭示了雷达电磁作用机理的特点。无植被沙丘几何散射模型,从理论上证明了SAR对干沙的穿透能力。发展了雷达极化理论,研究了火山熔岩的去极化现象和植物的多极化现象。他提出的多频多时相雷达处理与识别方法,为国家减灾减灾、矿产普查等需求做出了重要贡献。郭教授主持研制的数字地球概念技术模型和“数字地球原型系统DEPS/CAS”被国际同行誉为“里程碑式贡献”。他参与创立了国际数字地球学会,创办了《国际数字地球学报》并担任主编,推动了全球数字地球的发展。