得益于大量的研究努力,有机太阳能电池已成为可再生能源领域的有力候选者,据报道其能量转换效率超过 19%,使用寿命超过几十年。在组成有机太阳能电池的薄膜堆栈中,界面处的传输层起着关键作用,与光活性材料本身一样重要。由于这些界面所需的非常特殊的特性,电子 (ETL) 和空穴 (HTL) 传输层确实直接与器件的效率和稳定性有关。专注于 HTL 界面,大量材料已用于有机太阳能电池,例如 2D 材料、导电聚合物或过渡金属氧化物。在这篇综述中,我们介绍了用于制造有机太阳能电池的 HTL 材料的演变和最新进展,描述了它们的特性和沉积过程,并将它们与活性层中的富勒烯或新型非富勒烯受体的用途联系起来。关键词:有机太阳能电池;界面;空穴传输层。
超短激光脉冲是诱导材料改性的有力工具 1–4。特别是在透明电介质中,超短激光脉冲可用于局部修改材料块内的化学结构、折射率、色心密度,光聚合,产生纳米光栅、表面纳米结构或内部空隙。大量应用领域受益于基础性进步:外科和生物医学应用、光子学、微流体学、高速激光制造 2,5–7。将这些应用推进到纳米结构需要数值建模的支持 8。在激光诱导的强场下,束缚电子从价带跃迁到导带 1,9,10,在价带中留下一个空穴。电子-空穴等离子体的粒子在激光场中被加速,通过碰撞电离导致自由载流子密度倍增,并可能产生致密的电子-空穴等离子体。最后,在远大于几皮秒的时间尺度上,材料内部发生热和结构事件 1 。我们的模型侧重于等离子体密度的积累,时间尺度可达几皮秒。已经开发了大量不同的模型来研究超短激光脉冲(约 100 fs)在高强度范围内(约 10 14 W/cm 2 )在介电体中的传播以及随后的电离。这些模型可分为两类。第一类是几种
摘要:钙钛矿太阳能电池 (PSC) 引起了越来越多的研究兴趣,但其性能取决于材料的选择和所用的工艺。这些材料通常可以在溶液中处理,这使得它们非常适合卷对卷加工方法,但它们在环境条件下的沉积需要克服一些挑战以提高稳定性和效率。在这篇评论中,我们重点介绍了钙钛矿材料以及空穴传输层 (HTL) 和电子传输层 (ETL) 材料的光子固化 (PC) 的最新进展。我们介绍了如何使用 PC 参数来控制钙钛矿 HTL 和 ETL 层的光学、电学、形态和结构特性。强调这些进步对钙钛矿太阳能电池的重要性可以进一步凸显这项研究的重要性,并强调其在创造更高效和可持续的太阳能技术方面的重要作用。
摘要:卤化物钙钛矿发光二极管 (PeLED) 在下一代显示技术中具有巨大应用潜力。然而,由于高效率需要非常薄的传输层,而这些传输层在溶液处理过程中通常会因不当的润湿和干燥而出现空间不均匀性,因此扩大规模将具有挑战性。在这里,我们展示了如何使用通过原子层沉积生长的薄 Al 2 O 3 层优先覆盖不完美空穴传输层沉积的区域并与有机传输层形成混合复合材料,从而使空穴传导和注入能够通过有机空穴传输层持续进行。这具有减少异质结处非辐射复合和提高载流子选择性的双重效果,我们推断这是由于抑制了氧化铟锡和钙钛矿层之间的直接接触。我们观察到我们的 pin LED 中的电致发光外部量子效率立即从平均 9.8% 提高到 13.5%,冠军效率为 15.0%。该技术使用工业上可用的设备,可以很容易地扩展到更大的区域并纳入薄膜光伏电池等其他应用中。关键词:钙钛矿、发光二极管、原子层沉积、区域选择性、效率
摘要:无机选择性接触和卤化物钙钛矿 (HaPs) 之间的界面可能是使用这些材料制造稳定且可重复的太阳能电池的最大挑战。NiO x 是一种具有吸引力的空穴传输层,因为它适合 HaPs 的电子结构,而且高度稳定且可以低成本生产。此外,NiO x 可以通过可扩展且可控的物理沉积方法(如射频溅射)制造,以促进可扩展、无溶剂、真空沉积的基于 HaP 的太阳能电池 (PSC) 的探索。然而,NiO x 和 HaPs 之间的界面仍然无法得到很好的控制,这有时会导致缺乏稳定性和 V oc 损失。在这里,我们使用射频溅射来制造 NiO x,然后在不破坏真空的情况下用 Ni y N 层覆盖它。Ni y N 层在 PSC 生产过程中对 NiO x 进行双重保护。首先,Ni y N 层保护 NiO x 免受 Ar 等离子体将 Ni 3+ 物种还原为 Ni 2+ 的影响,从而保持 NiO x 的导电性。其次,它钝化了 NiO x 和 HaPs 之间的界面,保持了 PSC 的长期稳定性。这种双重效应将 PSC 效率从平均 16.5%(创纪录电池 17.4%)提高到平均 19%(创纪录电池 19.8%),并提高了器件稳定性。关键词:卤化物钙钛矿、太阳能电池、氧化镍、氮化镍、钝化、界面■简介
摘要。由于无序量子点的强轨道量子化,在标准 p 型硅晶体管中可以实现单空穴传输和自旋检测。通过使用充当伪栅极的阱,我们发现了表现出泡利自旋阻塞的双量子点系统的形成,并研究了漏电流的磁场依赖性。这使得可以确定空穴自旋状态控制的关键属性,其中我们计算出隧道耦合 tc 为 57 µ eV,短自旋轨道长度 l SO 为 250 nm。使用无序量子点时,界面处表现出的强自旋轨道相互作用支持电场介导控制。这些结果进一步激励我们,可以使用易于扩展的平台(例如行业标准硅技术)来研究对量子信息处理有用的相互作用。
作为出发点,来自生物系统周围介质的强局部电场显著影响生物分子中存在的非共价相互作用。31,32 最近的研究证实了外部电场(EEF)作为未来智能绿色试剂的强大影响至关重要。33 – 35 事实上,电场对催化、键解离、区域选择性、立体选择性、机械交叉和抑制具有无可争议的影响。36 – 41 到目前为止,已经发现电场对反应反应性影响的变化本质上与微观场的方向有关。 34 此外,EEF 还可能被用于对化学反应性进行前所未有的控制,从而导致在有机和生物化学领域实施多功能和非常规合成工具。32,42 – 44
金红石二氧化锗 (r-GeO 2 ) 是最近预测的一种超宽带隙半导体,在高功率电子器件中具有潜在的应用,其中载流子迁移率是控制器件效率的重要材料参数。我们应用基于密度泛函和密度泛函微扰理论的第一性原理计算来研究 r-GeO 2 中的载流子-声子耦合,并预测其声子限制的电子和空穴迁移率随温度和晶体取向的变化。计算出的 300 K 下的载流子迁移率为 l elec ; ? ~ c = 244 cm 2 V 1 s 1 ,l elec ; k ~ c = 377 cm 2 V 1 s 1 ,l hole ; ? ~ c = 27 cm 2 V 1 s 1 ,和 l hole ; k ~ c = 29 cm 2 V 1 s 1 。室温下,载流子散射以低频极性光学声子模式为主。n 型 r-GeO 2 的预测 Baliga 性能系数超过了 Si、SiC、GaN 和 b -Ga 2 O 3 等几种现有半导体,证明了其在高功率电子设备中的卓越性能。
最低朗道能级效应 W. Pan、W. Kang、M. P. Lilly、J. L. Reno、K. W. Baldwin、K. W. West、L. N. Pfeiffer 和 D. C.
本章的标题和许多思想都来自一本开创性的著作,即威廉·肖克利的《半导体中的电子和空穴》[1],该书出版于 1950 年,即晶体管发明两年后。1956 年,肖克利与布拉顿和巴丁共同因发明晶体管而获得诺贝尔物理学奖(图 1-1)。多年来,人们发现本章和下一章中介绍的材料对于深入了解各种半导体器件非常有用且必不可少。掌握这里介绍的术语、概念和模型将使您不仅能够理解当今存在的许多半导体器件,而且还能理解未来将发明的更多半导体器件。它还将使您能够与半导体器件领域的其他人进行知识交流。