传感平台必须在规模和复杂程度上取得进步,以支持地球和空间科学、情报、监视和侦察 (ISR) 以及行星探索等领域日益雄心勃勃的任务。分布式持久观测平台有可能通过改善区域覆盖、增强态势感知以及更快地识别趋势和变化,在下一代任务中发挥关键作用。美国宇航局兰利研究中心的“空间持久观测多智能体集群” (MACPOS) 项目正在开发构成此类平台的自主异构编队的关键技术。研究重点包括自组装智能体集群的动态编队协商、分布式运动规划和协调轨迹执行。自适应领导者-追随者编队协商允许智能体在必要时聚类和分离,以适应正常和新的任务目标。协调运动规划和执行可维持编队,同时确保环境中的智能体和障碍物之间的安全分离距离。这些功能使 MACPOS 与 NASA 的太空和地面现场组装计划相一致,该计划通过自主多智能体系统的基础技术开发来实现。本文介绍了 MACPOS 项目的概述和早期进展。我们描述了单个智能体和整个舰队的系统架构。给出了规划、控制和计量子系统的设计考虑。最后,我们讨论了计划中的项目里程碑和预期的发展进程。
•技术出版物。完成的研究或重大研究阶段的报告介绍了NASA计划的结果,并包括广泛的数据或理论分析。包括大量的科学和技术数据的汇编以及被认为具有持续参考价值的信息。NASA的同行评审正式专业论文的对应物,但对手稿的长度和图形演示范围的限制较小。•技术备忘录。初步或专业兴趣的科学和技术发现,例如,快速发布报告,工作论文和书目包含最少注释的书目。不包含广泛的分析。•承包商报告。NASA赞助的承包商和受赠人的科学和技术发现。
本研究描述了现场实验,在配备无线电等离子体波接收器的空间物理卫星与其他空间物体结合时测量甚低频 (VLF) 等离子体波 (1-30 kHz),以了解次级空间物体在另一颗卫星附近的快速通过是否可以被检测到。地球电离层中的物体在其轨道运动后会形成一个离子密度稀疏区域,这可以作为物体探测的基础。2022 年,现场实验尝试在太空无线电等离子体传感器快速穿越次级空间物体尾流期间将这些离子密度稀疏检测为宽带 VLF 等离子体波噪声。这是为了回答空间物体是否可以通过其轨道运动在地球电离层中引起的等离子体离子密度扰动来探测。加拿大空间物理卫星 CASSIOPE 启动了其无线电等离子体物理包,并在 CASSIOPE 与次级物体之间预测已知的近距离接近之前、期间和之后的时间记录了电场数据。 CASSIOPE 旨在测量地球的极光、粒子和场,其偏心轨道为 330 x 1200 公里,可偶然采集地球电离层中的各种等离子体状态。此外,对于太空领域意识社区来说,该轨道定期穿过人口密集的轨道壳层,例如 Starlink、Iridium、OneWeb 和其他太空物体,从而定期提供合相机会来尝试测量等离子体振荡。在合相之前,CASSIOPE 从其交叉偶极子无线电接收仪 (RRI) 收集了电场测量值,该仪器可检测到跨度约为 1-35 kHz 的等离子体电场振荡。2022 年初,共描述了 35 次合相。当物体穿过或靠近次级物体的预测尾流时,四次合相表现出 VLF 宽带噪声能量,范围从离子回旋频率 (~36 Hz) 到下混合谐振频率 (~5-6 kHz)。然而,我们发现与次级物体最接近时间的相关性从弱到强。其他会合中,次级物体从 CASSIOPE 后面经过,而 RRI 未穿过次级物体的尾迹,其波能并未超过环境背景辐射 - 这与空间物体离子声马赫锥外的等离子体将表现出未受干扰的等离子体行为的预测一致。虽然空间物体尾迹中的密度稀疏似乎与 VLF 范围内的会合有微弱的关联,但这些发现表明,应从等离子体波的角度来检查检测到的波能与次级物体运动之间的空间和时间分离,其中波能相对于空间物体尾迹几何约束之外的地磁场线传播。
薄层平面内各向异性材料可以支持超受限极化子,其波长取决于传播方向。此类极化子在探索基本材料特性和开发新型纳米光子器件方面具有潜力。然而,超受限平面内各向异性等离子体极化子 (PP) 的实空间观测一直难以实现,因为它们存在于比声子极化子更宽的光谱范围内。在这里,我们应用太赫兹纳米显微技术对单斜 Ag 2 Te 薄片中的平面内各向异性低能 PP 进行成像。通过将薄片置于 Au 层上方,将 PP 与其镜像混合,增加了方向相关的相对极化子传播长度和定向极化子限制。这允许验证动量空间中的线性色散和椭圆等频轮廓,从而揭示平面内各向异性声学太赫兹 PP。我们的工作展示了低对称性(单斜)晶体上的高对称性(椭圆)极化子,并展示了使用太赫兹 PP 对各向异性载流子质量和阻尼进行局部测量。
已签署协议 • 阿尔及利亚:阿尔及利亚航天局 (ASAL) • 加蓬:加蓬研究和空间观测局 (AGEOS) • 纳米比亚:纳米比亚科技大学 (NUST) • 尼日利亚:国家空间研究与发展局 (NASRDA) • 埃及:埃及航天局 (EgSA) • 刚果民主共和国国家遥感中心 (CNT) • 埃塞俄比亚:埃塞俄比亚空间科学技术研究所 (ESSTI)
3美国美国美国媒体推进实验室摘要气候建模联盟(CLIMA)正在开发旨在从数据中学习并使用最先进的计算技术的地球系统模型(ESM)。Clima的ESM结合了多个子模型,包括土地,大气,海洋和海冰。我们将介绍Clima的土地模型Climalm,该模拟物质地面过程。climalsm是高度模块化的,分为组成部分,包括土壤,雪,冠层和河流,每种都可以单独运行,校准或组合在一起以串联运行。CLIMALSM的模块化扩展到组件本身内的参数化,从而使新用户可以轻松添加和测试其他参数化模型。我们将使用全局数据演示如何使用全局数据来校准Climalsm,并以太阳能诱导荧光的空间观测为特定示例。关键字
根据全球对地观测系统 (GEOSS) 十年实施计划,GEOSS 的目标是“实现一个未来,即通过协调、全面和持续的地球观测和信息,为人类的利益做出决策和行动”。GEOSS 被其参与者视为实现联合国千年发展目标和进一步履行国际条约义务的重要贡献。该系统将涵盖地球的所有地区,并将使广泛的用户群体受益,包括管理人员和决策者、科学研究人员、民间社会、政府和非政府组织、国际机构和发展中国家用户。GEOSS 将整合现场、海上、机载和空间观测,并解决观测和模型的可互操作集成问题,以支持九个社会利益领域。
Absolut System 正在设计和生产热链接组件 (TLA),用于包括 CNES IASI-NG 和 MTG ESA 计划在内的空间观测计划。TLA 具有以下主要功能:确保低温冷却器的冷尖端(标称和冗余)与探测器或冷光具座之间的高导电耦合,降低刚度,允许冷尖端和探测器之间的错位和相对动态位移,还要符合太空产品常见的严格限制,例如:减轻质量,保持在静态和动态接口要求文档 (IRD) 减小的体积内,符合探测器接近度所规定的清洁度要求,并且在发射载荷和热循环下性能不会下降。本文将介绍针对候选材料和生产约束进行的不同技术权衡。由 5N (99.999) 高纯度铝箔和 OFHC 铜箔制成的 TLA FM(飞行模型)的当前热性能、机械性能和清洁度性能。将介绍几种正在进行的 TLA 设计和性能,包括为 2 级低温恒温器开发的由热解定向石墨 (POG) 箔制成的 TLA(在配套论文 [1] 中介绍)
1 图卢兹大学天体物理和行星学研究所,法国图卢兹 CNRS、UPS、CNES,2 ESTEC、ESA,荷兰诺德维克,3 比利时皇家空间航空研究所,比利时布鲁塞尔,4 瑞典空间物理研究所,瑞典基律纳,5 RAL Space,STFC,卢瑟福阿普尔顿实验室,英国牛津郡迪德科特,6 穆拉德空间科学实验室,伦敦大学学院,英国多金,7 LATMOS(大气、环境和空间观测实验室),IPSL,法国巴黎,8 TU-Braunschweig,德国布伦瑞克,9 空间天体物理和行星学研究所,INAF,意大利罗马,10 帝国理工学院,英国伦敦,11 空间科学研究所,M ă gurele,罗马尼亚,12大气物理学,CAS,捷克布拉格,13 Scibit,捷克利贝雷茨,14 奥地利科学院空间研究所,奥地利格拉茨,15 法国图卢兹 CNES,16 捷克布拉格查理大学,17 德国哥廷根马克斯普朗克太阳系研究所,18 捷克布拉格天文研究所,CAS,19 Artenum,法国拉蒙维尔圣阿涅,20 ONERA - 法国航空航天实验室,法国图卢兹
合作伙伴 本期内容:NASA p. 3/7/9/10/11/14/18/20/23/25/26/28/29/31/34/ 35,ESA 页。 9/20/24/25,NOAA p。 8/14/29,IRAP 天体物理和行星学研究所 p. 23/17,洛斯阿拉莫斯国家实验室(LANL)p. 23,空中客车防务与航天公司第页23,CNRS 页。 16/18/23,LATMOS 大气、环境和空间观测实验室 p。 10/26,JAX 第7/27,CSA 页。 16/24,JPL 页。 18/26,泰雷兹阿莱尼亚宇航公司第25,法国驻华盛顿特区大使馆第页30/34/35,法国商业投资第页18、ONERA国家航空航天研究中心p. 4/18,戈达德太空飞行中心第页10/18/35,SpaceX p. 7/9/24/36,CEA 页。 16/18,巴黎天文台第16,CLS 页34,中文页34,火箭实验室 p. 34,Exotrail p. 36,联邦通信委员会(FCC)第29/34,国防部第页7/14/29,蓝色起源 p. 7、Virgin Orbit 第页7、维珍银河 p.第 7 页,联合国8,外空委第页8、通过 CNES p 连接。 36,SCO 页。 8/9/14/20,LESIA 空间和天体物理仪器研究实验室 p。 10、LISA 大气系统研究大学间实验室 p. 10,LGPM 过程工程和材料实验室 p. 10,法国太空司令部(CDE)p. 11/29,美国太空军(USSF)p. 11/29,经济、财政和工业和数字主权部第 p. 28,高等教育、研究和创新部,第 p. 28,武装部队部第页28/32,国家空间委员会(NSpC)p. 28/13/15/28,法国国防采购局(DGA)p. 29,国家侦察局(NRO)第页29,国家地理空间情报局(NGA)p. 29,联邦航空管理局(FAA)第29,lFRI国际关系研究所p. 32,欧盟第32,北约页14/32,美国地质调查局(USGS)第14,白宫第页13/1