包装系统可确保轻松处理,最大的用户和患者安全性,以在专业医疗保健中进行医疗设备进行处理。市场上没有可比较的系统可以保证易于处理和安全应用。挑战在于单个组件的安全存储,以及用于节省空间的包装的整体尺寸。通过将组件锚定在setbox中来确保用户和患者安全。特殊的结构保证了罐子的安全固定。罐子持有人确保只能在巨大的力下除去罐子,这不包括混合风险。袋子由带穿孔的纸板袖带固定(防篡改)。颜色和数值设计支持布料应用的顺序,以确保正确的过程序列,从而确保合规性。双层壁(无剪式边缘),抗撕裂物质和抗微生物锁3个故障可防止纸板颗粒污染或在敏感的患者环境中粘附细菌并保证应用安全性。
简单摘要:基因组编辑是一种众所周知的方法,用于将靶向遗传替代物引入牲畜基因组中。这些变化必须在种系中转移,才能有效地在动物繁殖中。传递CRISPR-CAS9成分的常规方法,例如合子中的微注射或编辑体细胞,然后进行体细胞核转移(SCNT),在包括小鼠和某些家畜在内的各种物种中都取得了成功。但是,这些方法通常是劳动密集型的,技术要求的,并且与可变效率相关。电穿孔是一种最近描述的将Cas9和sgrnas交付到Zygotes中的方法,因为它需要比微注射较低的设备便宜,并且需要更少的时间。在本研究中,我们开发了一种称为合子(CRISPR-EP)CRISPR RNP电穿孔的有效方法,以降低镶嵌率并增加水牛的双重突变。开发的基因编辑的简单简单方案可以作为研究水牛胚胎的功能基因组学的有用方法。
使用标准制造商的建议制备了200μm的单层细胞阵列。用1%Geltrex™涂有6孔板的单个孔和CellRaft阵列(Gibco™Cat。编号A1413301)在37°C下过夜,准备细胞播种。在电穿孔之前,将成纤维细胞培养基分配到每个井/储层中。电穿孔后立即将电穿孔的成纤维细胞重悬于1ML的成纤维细胞培养基中,然后再滴入预先涂层的6孔板和蜂窝阵列中。在第一天,成纤维细胞培养基被补充的N2B27培养基取代,该培养基补充了新鲜的基本成纤维细胞生长因子(BFGF)(Thermo Scientific Cat。编号phg0264)。从D1-D15中,使用补充新鲜BFGF的N2B27培养基每隔一天进行一次完整的培养基变化。在D16上,N2B27培养基被Essential 8™培养基取代(Gibco Cat。编号A1517001),将细胞培养为IPSC。
体细胞核转移或细胞质显微注射已用于产生基因组编辑的农场动物。但是,这些方法具有降低其效率的几个缺点。这项研究旨在开发电穿孔条件,使CRISPR/CAS9系统的传递到牛为有效的基因敲除。我们优化了电穿孔条件,以传递CAS9:SGRNA核糖核蛋白到牛合子,而不会损害胚胎发育。较高的电穿孔脉冲电压导致膜渗透性增加。但是,高于15 v/mm的电压降低了胚胎发育潜力。牛胚胎的Zona卵石不是有效的RNP电穿孔的障碍。使用针对最大膜通透性进行优化的参数,同时我们在靶向牛OCT4时达到了高基因编辑的速率,这导致100%评估的胚胎和预期在莫拉拉阶段对胚胎发育的预期停滞的100%蛋白质。总而言之,CAS9:SGRNA核糖核蛋白可以通过电穿孔到Zona-Intact牛合子的能力递送,从而导致有效的基因敲除。
摘要:目的:这项研究的目的是探索γδT细胞扩展的最佳条件,并确定γδT细胞最合适的电穿孔条件。方法:在这项研究中,我们将唑来膦酸和细胞因子组合起来诱导γδT细胞,并使用Lonza amaxa 4D-核对象来优化电穿孔的区别。通过流式细胞仪检测到γδT细胞的电穿孔效率。结果:结果表明,外周血比脐带血可能产生更高的纯度γδT细胞(P <0.0001),并且诱导的γδT细胞的比例达到82.43±5.9%。通过流式细胞仪,我们发现与其他电动模块相比,电穿孔模块EH-115导致最高的电穿孔效率(所有p <0.0001)。此外,我们还发现,当100μl电穿孔系统中的细胞数量为3×10 6时,转移效率最高(所有P <0.001),并且最终转染效率达到69.1±2.26%。结论:在这项研究中,可以有效地获得一定比例的γδT细胞,并大大提高了转染效率,这为γδT细胞的遗传修饰提供了有效的程序。
DNA折纸纳米结构(DOS)是用于应用的有前途的工具,包括药物输送,生物传感,检测生物分子和探测染色质子结构。将这些纳米置换剂靶向哺乳动物细胞核可以提供有影响力的方法,用于探测,可视化和控制活细胞中的生物分子过程。我们提出了一种将DOS输送到活细胞核中的方法。我们表明,这些DO不会在细胞培养基或细胞提取物中经历可检测到的结构降解24小时。将DOS输送到人U2OS细胞的核中,我们结合了30纳米的纳米棒,其纳米棒具有针对核因子的抗体,特别是RNA聚合酶II的最大亚基(POL II)。我们发现,DOS在细胞中保持结构完整24小时,包括核内部。我们证明了电穿孔的抗POL II抗体结合的DOS被带回核中,并在细胞核内表现出次延伸的运动。我们的结果建立了与核因子的接口DOS,作为将纳米置换型传递到活细胞核中的有效方法。
电穿孔后 72 小时,可使用 BioLegend APC 抗人 TCR α / β 抗体通过流式细胞术评估用靶向 Edit-R sgRNA RNP 的 TRAC 或 TRBC 编辑的原代 CD4 + T 细胞的 TCR α / β 敲除情况。除了通过流式细胞术读取表型外,在基于 RNP 的编辑后 48-72 小时内,可以通过 T7EI/TIDE 测量插入/缺失形成。使用表 1 中列出的每个经过验证的 sgRNA 的引物,遵循 Dharmacon™ Edit-R™ 合成 gRNA 阳性对照试剂盒方案中的直接细胞裂解和 PCR 条件。要测量 T7EI 内切酶的插入/缺失形成,请完成上面列出的方案并使用分析软件。要通过分解 (TIDE) 分析跟踪插入/缺失来测量插入/缺失形成,请将得到的 PCR 扩增子发送至 Sanger 测序并使用网络工具,例如 http://shinyapps.datacurators.nl/tide/ 。以下方案描述了用于通过流式细胞术评估原代 CD4 + T 细胞中 TCR α / β 表型敲除的染色条件。1. 通过离心(300-5 分钟)沉淀用 PPIB、NTC2、TRAC 或 TRBC 靶向 RNP 电穿孔的 CD4 + T 细胞
对更高能量密度的不懈追求对电池安全性提出了挑战。[8,9] 更薄的隔膜会增加穿孔的危险,而锂金属的使用则有可能引起枝晶穿透和短路。发生短路时,快速自放电产生的大电流通过低电阻电子通路产生焦耳热,使隔膜和电极材料的温度达到击穿点(150-250°C),[10] 引发一系列放热反应和热失控。[11,12] 内部短路可能是由机械变形(例如在钉刺试验期间 [13,14] )和过度充电等外部原因引起的,但也可能由于没有明显的外部原因而发生,例如最近发生的停放电动汽车自燃事件。[15] 推测的机制包括电池中导电丝的生长,最终会穿透隔膜并使电池短路。 [16] 目前已开发出各种防止和管理锂离子电池热失控的方法,包括压力释放孔、[17] 防止过度充电的先进电池管理系统、设计为断裂以便电子隔离短路的集电器,[18] 以及阻燃添加剂。[19]
重点 � 第 467 条要求雇主制定针对爆破活动的安全工作程序。处理烟火和特效装置及爆炸物的安全工作程序必须基于所引用的国家消防协会 (NFPA) 标准。(OHS 法规第 8 条要求程序必须为书面形式并可供工人使用。) � 第 503 条提到适用于射频发射器和爆炸物的新的和修订的最小间隔距离表。这些表格区分了固定射频发射器(例如电视发射塔)和移动发射器(例如便携式双向无线电和蜂窝电话)。 � 第 515 条允许在雪崩控制活动期间预先引爆炸药。炸药的引爆通常仅限于爆破现场。加拿大雪崩协会已经证明,预先引爆炸药并随后小心运输炸药是控制雪崩的安全做法。 � 第 516 节提出了针对油井爆破和穿孔的具体要求。� 第 466 节禁止在爆炸物附近存在燃烧材料。第 517 节承认在寒冷条件下在偏远地区操作的地震钻机通常使用明火来解冻钻井过程中所需的冰冻水和水管。因此,本节允许在地震期间使用明火加热装置
对更高能量密度的不懈追求对电池安全性提出了挑战。[8,9] 更薄的隔膜会增加穿孔的危险,而锂金属的使用则有可能引起枝晶穿透和短路。发生短路时,快速自放电产生的大电流通过低电阻电子通路产生焦耳热,使隔膜和电极材料的温度达到击穿点(150-250°C),[10] 引发一系列放热反应和热失控。[11,12] 内部短路可能是由机械变形(例如在钉刺试验期间 [13,14] )和过度充电等外部原因引起的,但也可能由于没有明显的外部原因而发生,例如最近发生的停放电动汽车自燃事件。[15] 推测的机制包括电池中导电丝的生长,最终会穿透隔膜并使电池短路。 [16] 目前已开发出各种防止和管理锂离子电池热失控的方法,包括压力释放孔、[17] 防止过度充电的先进电池管理系统、设计为断裂以便电子隔离短路的集电器,[18] 以及阻燃添加剂。[19]