摘要 本文介绍了一种比色检测唾液 α-淀粉酶的方法,该酶是自主神经系统 (ANS) 活动的潜在生物标志物之一,可用于评估疲劳。利用 α-淀粉酶裂解多糖 α 键的能力来开发比色测定法。在所提出的方法中,2-氯-4-硝基苯基-α-D-麦芽三糖苷作为底物,在被唾液 α-淀粉酶裂解后释放出有色副产物。引入麦芽糖作为非竞争性抑制剂可在生理相关浓度范围 (20-500 μ g/mL) 内产生理想的线性响应,检测限 (LOD) 为 8 μ g/mL(在水溶液中)。随后优化底物和非竞争性抑制剂的浓度,以进行唾液 α-淀粉酶的比色检测。提出了一种简便的纸基“试纸”检测方法,用于分析人类唾液样本,唾液成分的干扰很小。所提出的检测方法快速、特异性强且易于实施,可用于比色检测唾液 α-淀粉酶 20-500 μ g/mL 之间。互补的 RGB(红、绿、蓝成分)分析 17 提供定量检测,LOD 为 11 μ g/mL。这两种检测格式以 Phadebas 18 测试为基准,Phadebas 18 测试是一种最先进的 α-淀粉酶分光光度检测方法。所报告的纸基方法 19 具有很高的潜力,可用于评估 ANS 对应激源的反应改变,可能在疲劳评估和监测疲劳发作方面有应用。21
摘要:由黑穗病菌(Ustilaginoidea virens)引起的水稻稻曲病是世界范围内最具破坏性的水稻病害之一,它导致水稻品质和产量的严重下降。作为一种空气传播的真菌病害,水稻稻曲病的早期诊断、监测其流行和病原体的分布对于控制感染尤为重要。在本研究中,开发了一种用于U. virens检测和定量的定量环介导等温扩增(q-LAMP)方法。与定量实时PCR(q-PCR)方法相比,该方法具有更高的灵敏度和效率。所使用的UV-2组物种特异性引物是根据U. virens ustiloxins生物合成基因(NCBI登录号:BR001221.1)的独特序列设计的。q-LAMP检测方法能够在60分钟内检测到6.4孢子/mL的浓度,最佳反应温度为63.4 ◦ C。此外,当纸带上只有 9 个孢子时,q-LAMP 方法甚至可以实现准确的定量检测。建立了 U. virens 检测和定量的标准曲线线性化方程 y = − 0.2866x + 13.829(x 为扩增时间,孢子数= 10 0.65y)。在田间检测应用中,该 q-LAMP 方法比传统观察方法更准确、更灵敏。总之,本研究建立了一种强大而简便的 U. virens 监测工具,为水稻稻曲病的预测预报和管理提供了宝贵的技术支持,也为精准施用杀菌剂提供了理论依据。
机械工程系学者所作的世界级研究成果得到了不同方面的认可。根据斯坦福大学最近编制并于 2021 年 10 月发布的“标准化引文指标的科学范围作者数据库更新”,20 名机械工程系学者(其中 12 名是现任机械工程系成员)因其职业生涯引用影响力而跻身其主要学科领域中全球被引用次数最多的科学家前 2%。尤其是陈国华教授,在化学工程领域被引用次数最多的科学家中排名第 13 位。此外,张晓博士被列为理大八位被科睿唯安列入“2021 年高被引研究人员”名单的学者之一。该名单确定了全球最具影响力的学者,他们研究成果卓越,由其在各自领域发表的多篇高被引论文确定,这些论文的引用次数均位列前 1%。机械工程系同事一直积极寻求研究合作。报告期内,本院获得多项合作研究项目,包括阮海辉博士与伯恩光学(香港)有限公司的产业合作项目(550 万港元)。郑光平博士与郑州大学郑新成教授合作的绿色科技项目“一种安全、高效、简便的储氢和制氢方法:固态储氢材料的催化水解”(330 万港元)。21/22 年,本院与多伦多大学、天津大学和西北工业大学分别成功获得三项一般研究资助。与非本地博士后联合培养计划成功实施
更新已共享?谢谢:这是一个非常具有挑战性的冬天,所以感谢所有努力维护患者安全和相互支持的员工。冬季病毒继续影响着我们的医院——有关如何接种疫苗的信息,请参见内联网的主页。建设未来:随着海滩大楼的启用,UHD 迎来了重要的一年。请翻到第 8 页查看日记的转型日期。获得无烟支持:3 月 12 日,我们的 UHD 站点将无烟。在第 5 页,了解如果您戒烟,多久能开始感受到益处,并获得我们所有的免费戒烟支持。员工脉搏:填写员工脉搏调查,告诉我们您在 UHD 工作的经历。请鼓励您的团队参与。畅所欲言:帮助制定我们的行为宪章,并在第 10 页查看 FTSU 提供哪些支持。质量和安全:这些仍然是 2025 年的重点,我们的 UHD 安全团队已经安排了一系列午餐学习课程。请阅读第 12 页上的更多内容。学习一项新技能:2025 年会成为您学习新知识的一年吗?参加西南领导力学院提供的众多课程。请参阅第 19 页。2025 年活动和事件日历:在您的支持下,请在第 20 页查看我们将在 UHD 上标记的日期,并请与您的团队分享。患者至上:您是否收到了太多电子邮件?我们希望创建一种我们都能遵守的健康电子邮件文化,但我们首先需要您的反馈。请参阅第 21 页。健康中心:请在第 11 页上收听我们的 UHD 播客 The People Pod 的最新一集。我们讨论了男性心理健康及其影响这一主题。感谢应用程序:我们推出了新的感谢应用程序——一种快速简便的方式来表达您对同事或团队的赞赏。请参阅第 7 页。
自从教会和简便的开拓性贡献以来,对证明理论,类型系统和λ钙库的研究已经产生了多种逻辑和计算形式主义,可以代表证明和计划,在这些形式上可以代表削减或通过重新构建的范围来代表削减的过程,从而可以在范围内进行临时,从而在范围内进行范围的范围,从而在范围内进行构成,从而在范围内进行构成,并且可以在范围内进行构成,从而在范围内进行构成,并且会在范围内进行降临,并且可以在范围内进行降临,并且可以在范围内进行降临,并且可以在范围内进行降临,并且可以在范围内进行降级,并且可以在范围内(范围)进行(范围内)。例如,[20],[28],[34],[36])。所考虑的系统通常非常表现力,这就是为什么上述归一化属性在逻辑上变得不平凡,并且几乎无法进行组合。自八十年代中期以来,上面概述的情况已经以某种方式发生了变化:线性逻辑的出现[21]允许填充结构归因于基础计算过程。通过识别结构性逻辑规则,并在特定的收缩中,作为标准化结果中的瓶颈,线性逻辑引起了证明和类型系统的引入,其中结构规则受到严格限制或根本不允许。因此,可以通过纯粹的组合方式证明归一化属性:重写和切割的效果严格降低了手头物体的大小。在定量系统中,定性系统中存在一个有限的方面,这使得它们特别适合于复杂性类的表征,并且通常认为对资源使用的使用是必要的。证明或程序,这种系统,我们将其称为定量性 - 仅仅是为了将它们与上一段中我们提到的某种定性系统区分开 - 不仅包括乘法线性逻辑[11],[21],[11],[21],而且还包括非目标交点类型[12],[12],[19],[19],这些extirtions [19],这些类型基于某些类型,以及某些类型[8],[14],[14],[14],[14],[14],[14],[14],[14],[14],[14],[14],[19]所谓的光逻辑[22],[23],[27]。
唾液 DNA 分离试剂盒 - 50 次制备产品说明书产品编号 RU45400 Norgen 唾液 DNA 分离试剂盒提供一种快速简便的方法,用于从使用 Norgen 唾液 DNA 收集和保存设备收集和保存的唾液样本以及新鲜唾液中分离基因组 DNA。从唾液中发现的颊上皮细胞和白细胞中提取的人类基因组 DNA 可用于诊断的各种应用。分离的 DNA 可用于检测生物标志物,以诊断疾病、跟踪疾病进展或监测特定治疗的效果。唾液 DNA 还可用于诊断特定类型的感染。从唾液中分离 DNA 已成为一种有吸引力的血液或组织分离替代方法,因为样本采集是非侵入性的,样本可由几乎不受培训的人员采集,并且不需要特殊设备。使用 Norgen 试剂盒纯化的唾液 DNA 质量最高,并且与许多下游研究应用兼容,包括 PCR、Southern Blot 分析、测序和微阵列分析。Norgen 的纯化技术纯化基于旋转柱色谱法。基因组 DNA 优先从其他细胞成分(如蛋白质和 RNA)中纯化。唾液 DNA 可以从使用 Norgen 唾液收集和保存设备收集和保存的唾液样本或新鲜唾液样本中分离。将保存的唾液样本(新鲜唾液样本与裂解缓冲液 F 混合)与蛋白酶 K 混合并在 55°C 下孵育 10 分钟,然后将结合缓冲液 B 添加到样本中,然后在 55°C 下进行第二次孵育 5 分钟。然后将异丙醇添加到混合物中。然后将所得溶液加载到旋转柱上。只有 DNA 会与柱结合,而大多数 RNA 和蛋白质将在流通中被去除。然后用提供的洗涤液洗涤结合的 DNA,以去除任何残留的杂质,并用洗脱缓冲液 B 洗脱纯化的总 DNA。纯化的 DNA 质量最高,可用于多种下游应用。规格
微生物纳米技术,即微生物驱动的纳米生物技术,是微生物技术领域的一个新兴领域,它利用了生物技术过程。微生物的生物勘探可以生产大量不同的纳米级材料,例如有机纳米材料、金属及其氧化物纳米材料等。(Verma 等人,2022 年)。与化学、物理和物理化学方法等替代合成途径相比,微生物纳米工厂路线采用绿色简便的方法来生产生物纳米材料。微生物纳米材料具有功能化的生物活性基团,可在纳米级上提高稳定性和功能性。这些微生物纳米产品主要用作坚固的载体,用于完整地递送/利用生物活性成分,以用于从农业食品到制药行业的定制应用(Chamundeeswari 等人,2019 年)。微生物纳米材料已被用于净化环境有毒物质,通过生物催化将工业废水中产生的有害污染物降解为无害的副产品 ( Verma, 2017 ; Verma et al., 2020 )。因此,微生物纳米生物技术具有广泛的应用范围,构成了微生物纳米制造中一种经济高效的方法,并可能在不久的将来为社会带来巨大的利润。随着绿色纳米技术的出现,重金属和致病菌对可持续水产养殖业的影响可以降到最低。在这方面,Saad 等人利用枯草芽孢杆菌 AS12 开发了一种生产 77 纳米大小的硒纳米颗粒的有效方法。通过细菌介导的硒纳米粒子生物合成,富含功能性生物活性成分(即黄酮类化合物和次生代谢物)的细菌悬浮液提供了纳米粒子在形状和大小方面的稳定性。这些纳米粒子针对尼罗罗非鱼(Oreochromis niloticus)中两种重金属(Cd 和 Hg)的积累和致病细菌嗜水气单胞菌负荷进行了测试。进一步的作者建议,生物源硒纳米粒子可能非常适合用于污染水,以最大限度地减少致病微生物和重金属的副作用;从而提高水产养殖业的生产力。
并且在经常变性和非生物环境中保持稳定性。[1–5] 其中一种策略已导致甲苯中酶的活性保持长达数小时,[6] 该策略根据蛋白质表面化学定制随机共聚物的组成。原则上,共聚物可以精确设计来稳定任何给定的蛋白质而不影响活性。然而,无论是通过合理设计还是筛选,识别此类共聚物都具有挑战性,因为组合设计空间很大(例如,单体化学、链长、结构)。[7] 因此,适合用途的 PPH 可以促进无数应用——生物燃料生产、[8] 塑料降解、[9,10] 药物合成 [11]——但它们的稳健设计策略仍然难以捉摸。在过去十年中,机器学习 (ML) 极大地加速了跨学科的材料发现,[12–14] 使得更有效地识别具有目标特性的材料成为可能。 [12,15–20] 尽管如此,机器学习指导的共聚物设计受到多种因素的限制,包括训练模型所需的高质量数据的可用性。[7,21–24] 大多数聚合物数据库主要以均聚物为主,[25] 而聚合物合成和表征的繁琐性质严重限制了可“内部”检查的系统数量。[26] 因此,一些共聚物设计工作依赖于计算机生成的数据。[20,27,28] 同时,最近的实验工作使用流动反应器或并行批量合成器来提供适度的数据(<500 个样本)。[17,29,30] 更可扩展的方法将大大扩展设计用于 PPH 和其他材料应用的共聚物的能力。在这里,我们使用主动机器学习来快速设计共聚物,以与葡萄糖氧化酶(GOx)、脂肪酶(Lip)和辣根过氧化物酶(HRP)形成热稳定 PPH(图 1)。为了高效获取数据,我们使用自动化耐氧自由基聚合进行共聚物合成 [31,32],并开发了一种简便的热稳定性测定法来表征 PPH。借助此平台以及对每种酶进行五次“学习-设计-构建-测试”循环,我们成功识别出具有显著酶活性的 PPH;这些 PPH 通常优于通过系统筛选 500 多种独特共聚物而获得的 PPH。值得注意的是,我们证明了我们的策略(利用主动机器学习)可以适当地调整数据采集以适应
东卡罗来纳大学 北卡罗来纳州格林维尔 摘要 本文回顾了最小化虚拟机 (VM) 资源需求的常见做法。此外,作者提出了一种新颖的嵌套 VM 架构,用于网络安全虚拟实验室环境,该环境在单个主机上包含 90 多个 VM。通过使用开源工具并最小化 VM 的操作系统,作者能够显著降低 VM 资源需求,同时提高 VM 性能。这项工作为寻求降低 VM 开销和提高虚拟实验室环境性能的技术教育者提供了有用的信息。本文还为进一步研究最大化虚拟实验室环境性能奠定了基础。 关键词:网络安全、虚拟机、远程实验室、虚拟化技术 1. 简介 虚拟化计算机资源的能力彻底改变了信息和计算机技术 (ICT) 教育,特别是对于实践培训实验室,许多人都认为这在 ICT 教育中至关重要 [1],[4]。过去,机构在 ICT 教育实验室环境和使其保持最新方面投入了大量物力和财力 [4]。然而,近年来,虚拟化技术 (VT) 为机构提供了一种大幅减少构建和维护 ICT 实验室环境所需的物理、财务和人力资源的方法。这主要是由于虚拟机取代了物理桌面和服务器 [5]、[9]。虚拟机本质上是与其所在的物理硬件分离的逻辑计算机。这可以通过称为虚拟机管理程序的抽象层实现。虚拟机非常有用,因为多个虚拟机可以在单个物理主机上运行并共享物理资源。例如,运行虚拟机管理程序的单个刀片服务器可以托管整个计算机实验室,其中包含 30 到 40 台台式计算机。使用 VT 和虚拟机的其他优势包括快速简便的实验室环境设置、旧版应用程序支持、可扩展性、轻松远程访问实验室环境以及创建复杂实验室环境的灵活性。此外,大量研究表明,在教授 ICT 学生的动手技能方面,虚拟实验室环境与物理实验室环境相当。出于这些原因,虚拟机实际上已经取代了 ICT 动手培训练习中的物理机器 [5]、[9]、[10]。
1.塔坎,R.;汉德里亚-德拉甘,M.;莱奥尔丁,C.-I。;乔班,R.C.;吻,G.-Z。;扎哈里-布图塞尔,D.;法尔考,C.;沃尔波伊,A.;西蒙,S.;博蒂兹,I。作为热界面材料的PMMA/RGO复合薄膜的开发,应用聚合物科学杂志,2022年,e53238;自动识别系统:0.363;如果:3.0。2.塔坎,R;汉德里亚-德拉甘,M.;托多-波尔,O.;彼得罗瓦伊,我;法尔考,C.;俄语,M;沃尔波伊,A.;托迪亚,M.;阿斯蒂林,S.;博蒂兹,I。一种在 N,N-二甲基甲酰胺中还原氧化石墨烯的新型、快速、简便的合成方法。合成金属。2020, 269, 116576;自动识别系统:0.479;如果:4.4。3.塔坎,R.;托多-波尔,O.;彼得罗瓦伊,I.;勒奥尔丁,J.;阿斯蒂林,S.;博蒂兹,I。今天还原了氧化石墨烯。材料化学学报 C, 2020, 8, 1198-1224; AIS:1.163;如果:6.4。4.托多-波尔,O.;彼得罗瓦伊,I.;塔坎,R.;沃尔波伊,A.;大卫,L.;阿斯蒂林,S.;博蒂兹,I。通过优化薄膜微观结构增强供体-受体 PCE11 的光致发光淬灭:PPCBMB 薄膜。纳米材料, 2019, 9(12), 1757;自动识别系统:0.7071;如果:5.3。5.托多-波尔,O;彼得罗瓦伊,I.;塔坎,R.;大卫,L.;阿斯蒂林,S.;博蒂兹,I。聚合物微观结构的控制:通过对流自组装制备富勒烯活性薄膜。固体薄膜, 2019, 697, 137780;自动识别系统:0.315;如果:2.1。6.托多-波尔,O.;彼得罗瓦伊,I.;塔坎,R.;克拉西翁,A.M.;大卫,L.;安格斯,S.B.;阿斯蒂林,S.;博蒂兹,I。通过控制薄膜沉积过程来改变纯共轭聚合物薄膜和混合共轭聚合物薄膜的光电特性。光电与先进材料学报, 2019, 21, 367-372;自动识别系统:0.053;如果:0.5。