通过将药物输送到内耳(即耳蜗)来进行治疗。尽管已经提出了药物来防止毛细胞受损或恢复毛细胞功能,但这种治疗的难点在于确保向细胞输送足够的药物。为此,我们提出了一种方法来评估将磁性粒子纳米机器人(称为 MNPS)及其聚集体移动通过耳蜗圆窗膜 (RWM) 所需的磁力。所提出的有限元方法可以作为使用 MNP 设计内耳药物输送系统的附加工具。
建议引用推荐引用hatamleh,raed。“基于基于弱模糊复数的部分有序环及其与部分有序的中性粒细胞环的关系。”中性粒细胞和系统78,1(2025)。https://digitalrepository.unm.edu/nss_journal/vol78/iss1/31
摘要:自组装功能化纳米粒子是多种潜在应用的焦点,特别是用于分子级电子设备。这里,我们对 10 纳米金纳米粒子 (NPs) 进行了自组装实验,这些粒子由一层致密的偶氮苯-联噻吩 (AzBT) 分子功能化,目的是构建具有忆阻特性的光可切换设备。我们制造了由 NP 自组装网络 (NPSAN) 组成的平面纳米设备,这些纳米电极与纳米电极接触,纳米电极之间的电极间隙从 30 到 100 纳米不等。我们展示了这些 AzBT-NPSAN 中光诱导的电导可逆切换,创下了高达 620 的“开/关”电导比记录,平均值约为。 30,85% 的器件的比例超过 10。对纳米颗粒表面化学吸附的分子单层之间的界面结构和动力学进行了分子动力学模拟,并将其与实验结果进行了比较。结果表明,接触界面的性质与分子构象密切相关,对于 AzBT 分子,可以通过明确定义波长的光照射在顺式和反式之间可逆地切换。与通过导电 c-AFM 尖端接触的平面自组装单层上进行的实验相比,分子动力学模拟为实验观察到的两个异构体之间开/关电流比降低提供了微观解释。
我们展示了单层和少层石墨烯薄片的拉曼光谱测量结果。我们使用扫描共焦方法收集具有空间分辨率的光谱数据,这样我们就可以直接将拉曼图像与扫描力显微照片进行比较。单层石墨烯可以通过 D' 线的宽度与双层和少层石墨烯区分开来:单层石墨烯的单个峰分裂为双层的不同峰。这些发现是使用基于电子结构和声子色散的从头计算的双共振拉曼模型来解释的。我们研究了 D 线强度,发现薄片内没有缺陷。源自边缘的有限 D 线响应可以归因于缺陷或平移对称性的破坏。
植物病毒纳米粒子 (VNP) 成本低廉、可靠且可重复使用,已成为纳米医学(尤其是癌症治疗)中多功能且有前途的平台。这些生物纳米结构具有独特的物理化学特性,包括生物相容性、生物降解性和结构均匀性,使其成为靶向药物输送的理想候选材料。此类纳米粒子能够封装化疗剂并与肿瘤特异性配体功能化,有助于精确输送到癌组织,最大限度地减少脱靶效应并提高治疗效果。此外,植物病毒载体 (VLP) 是引起抗肿瘤免疫力的有吸引力的选择,因为它们无疑是安全、无害的,适合大规模生产和药理学适应。本综述深入探讨了植物病毒纳米粒子的分子结构、其功能修饰以及它们与癌细胞相互作用的机制。此外,它还重点介绍了临床前研究和新兴临床应用,解决了将 VNP 从实验室转化为临床的机遇和挑战。通过探索 VNP 的抗癌潜力,本文旨在强调其在塑造可持续植物源肿瘤纳米技术未来方面的作用。
CMOS 技术的巨大成功以及由此带来的信息技术进步,无疑归功于 MOS 晶体管的微缩。三十多年来,MOS 晶体管的集成度和性能水平不断提高。随后,为了提供功能更强大的数字电子产品,MOSFET 的制造尺寸越来越小、密度越来越高、速度越来越快、成本越来越低。近年来,微缩速度不断加快,MOSFET 栅极长度已小于 40 纳米,器件已进入纳米世界(图 1)[1]-[2]。所谓的“体”MOSFET 是微电子技术的基本和历史性关键器件:在过去三十年中,其尺寸已缩小了约 10 3 倍。然而,体 MOSFET 的缩放最近遇到了重大限制,主要与栅极氧化物(SiO 2 )漏电流 [3]-[4]、寄生短沟道效应的大幅增加以及迁移率急剧下降有关 [5]-[6],这是由于高度掺杂的硅衬底正是为了减少这些短沟道效应而使用的。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年1月29日发布。 https://doi.org/10.1101/2025.01.27.633179 doi:Biorxiv Preprint
所有怀孕的大约10%受胎儿生长限制(FGR)的影响。FGR的主要病因是胎盘不足:胎盘不提供适当量的营养素和氧气。目前尚无FGR或胎盘功能不全的治疗方法。由于胎盘在FGR中的关键作用并为胎儿提供营养,因此为治疗性干预提供了绝佳的目标。使用豚鼠孕妇营养限制模型和重复的胎盘纳米粒子介导的IGF1处理,胎盘IGF1信号传导和养分传输途径的表征以了解FGR和治疗的变化。这项研究阐明了反复的胎盘纳米粒子介导的IGF1治疗导致胎儿生长的信号传导机制。总体而言,这项研究导致FGR和治疗组的胎盘内性别特异性激酶信号传导和营养转运蛋白变化。与我们先前使用此治疗的研究相结合,我们证明了这种治疗方法的基本分子信号传导,并概括了该疗法以实现未来人类翻译的合理性。
必须精确控制微米和纳米粒子的合成以获得所需的形状和组成,因为这些特性会深刻影响它们的应用效果。大量文献旨在通过改进合成程序不断改进这些材料的结构 / 功能。其中,越来越多的化学领域专注于绿色合成方法,以提供更可持续的替代方案,同时保持粒子的生物活性。例如,本研究主题研究了使用印度楝 (neem) 提取物合成的氧化镁 (MgO) 纳米粒子 (Al-Harbi 等人)。制备的 MgO 纳米粒子在热和生物介质下表现出显着的稳定性,同时具有显着的抗氧化、抗炎和抗菌特性。与这种对更环保的工艺和材料的搜索相一致,另一项特色研究回顾了用于组织工程的基于丝素的支架的开发 (Ma 等人)。蚕丝是由超过 20 万种节肢动物生物合成的,其中包括家蚕蛾,它的蚕丝是