一维粒子模拟 (PIC) 用于分析新视野号绕冥王星太阳风 (SWAP) 仪器在距离太阳约 34 天文单位处观测到的行星际激波上游区域测得的能谱。使用单个种群模拟不同的太阳风离子 (SWI) 和拾取离子 (PUI) 种群,我们可以清楚地识别出每个种群对全球能谱的贡献。强调了激波前沿倾斜度在沿磁场流回远离前沿的上游区域的 PUI 形成中的重要作用。在本模拟中可以很好地恢复 SWAP 实验测得的能谱。详细分析表明:(1) 能谱的最高部分主要由回流的 PUI-H + 和 PUI-He + 形成; (2) 能谱的中间部分由太阳风 SW-H + 和 SW-He 2+ 入射离子组成,这些离子叠加在 PUI-H + 粒子群上,(3) 低能范围由入射 PUI-H + 组成。使用 PUI-H + 粒子群的初始填充壳分布(而不是零厚度壳),可以提高实验结果与模拟结果之间的一致性,因为这会强烈影响光谱的低能部分。这意味着 PUI-H + 离子在日光层中首次被拾取后,有足够的时间扩散到壳分布并填充壳分布,这表明随后的冷却对全球能谱有重要影响。
摘要 激光能量与电子的耦合是强激光-等离子体相互作用中几乎所有主题的基础,包括激光驱动的粒子和辐射产生、相对论光学、惯性约束聚变和实验室天体物理学。我们报告了对箔靶总能量吸收的测量结果,这些箔靶厚度范围从 20 μ m(对于该厚度,靶保持不透明且表面相互作用占主导地位)到 40 nm(对于该厚度,膨胀可实现相对论诱导的透明性和体积相互作用)。我们测量到,在最佳厚度 ∼ 380 nm 处,总峰值吸收率为 ∼ 80%。对于较薄的靶,虽然总吸收率会降低,但逃离靶的高能电子数量会增加。2D 粒子模拟表明,这是由于强激光脉冲在靶体积内传播时,电子被直接激光加速所致。结果表明,总能量与电子的耦合和有效加速到更高能量之间存在权衡。
极快变异性的起源是Blazars伽马射线天文学中的长期问题之一。尽管许多模型解释了较慢,能量较低的可变性,但它们无法轻易考虑到达到每小时时间尺度的快速流动。磁重新连接是将磁能转化为重新连接层中相对论颗粒加速的过程,是解决此问题的候选解决方案。在这项工作中,我们在统计比较中采用了最新的粒子模拟模拟,观察到了众所周知的Blazar MRK 421的浮雕(VHE,E> 100 GEV)。我们通过生成模拟的VHE光曲线来测试模型的预测,这些曲线与我们开发的方法进行了定量比较,以精确评估理论和观察到的数据。通过我们的分析,我们可以约束模型的参数空间,例如未连接的等离子体的磁场强度,观察角度和大黄色射流中的重新连接层方向。我们的分析有利于磁场强度0的参数空间。1 g,相当大的视角(6-8°)和未对准的层角度,对多普勒危机的强烈候选危机进行了强大的解释,通常在高同步器峰值峰值的射流中观察到。
摘要 X/γ 射线在实验室天体物理和粒子物理中有许多潜在的应用。尽管已经提出了几种方法来产生具有角动量(AM)的电子、正电子和 X/γ 光子束,但产生超强明亮的 γ 射线仍然具有挑战性。本文提出了一种全光学方案来产生具有大光束角动量(BAM)、小发散度和高亮度的高能 γ 光子束。在第一阶段,强度为 10 22 W/cm 2 的圆偏振激光脉冲照射微通道靶,从通道壁拖出电子,并通过纵向电场将其加速到高能量。在此过程中,激光将其自旋角动量(SAM)转换为电子的轨道角动量(OAM)。在第二阶段,驱动脉冲被附着的扇形箔反射,从而形成涡旋激光脉冲。在第三阶段,高能电子与反射的涡旋脉冲正面碰撞,并通过非线性康普顿散射将其 AM 转移到 γ 光子。三维粒子模拟表明,γ 射线束的峰值亮度约为 10 22
背景。河外等离子体喷流是少数能够限制超高能宇宙射线的天体物理环境之一,但它们是否能够加速这些粒子尚不清楚。目的。在这项工作中,我们通过考虑喷流的整体横向结构,重新审视了超出局部均匀场近似的相对论磁化冲击下的粒子加速。方法。使用相对论电子离子等离子体喷流的大型二维粒子模拟,我们表明在与周围介质的界面处形成的终止冲击将粒子加速到限制极限。结果。喷流磁场的径向结构导致相对论速度剪切,从而激发下游介质中的冯·卡门涡街,该涡街尾随充满宇宙射线的过压气泡。粒子在每次穿过剪切流边界层时都会得到有效加速。结论。这些发现支持了河外等离子体喷流可能能够产生超高能宇宙射线的观点。这种极端粒子加速机制也可能适用于微类星体喷流。