机械力在细胞通信和信号传导中起重要作用。我们在这项研究中开发了新型电化学基于DNA的力传感器,用于测量细胞生成的粘附力。在基于智能手机的电化学装置的表面上构建了两种类型的DNA探针,即张力量规系和DNA发夹,以检测可调级别的Piconewton尺度细胞力。经历细胞张力后,DNA探针的展开会诱导氧化还原报道与电极表面的分离,从而导致可检测到的电化学信号。以整联蛋白介导的细胞粘附为例,我们的结果表明这些电化学传感器可用于高度敏感,健壮,简单和便携的细胞生成力测量。
2.1 弹性:变形力、恢复力、弹性体和塑性体、应力和应变及其类型、胡克定律、应力应变图、杨氏模量、体积模量、刚性模量及其之间的关系(无推导)(简单问题)。(简单问题)H.T. 的应力应变图。钢、铸铁、铝和混凝土、极限应力和断裂应力、安全系数。2.2 表面张力:力——内聚力和粘附力、接触角、毛细管中液体表面的形状、毛细作用及其示例、表面张力之间的关系、毛细上升和毛细半径(无推导)(简单问题)、杂质和温度对表面张力的影响。2.3 粘度:速度梯度、牛顿粘度定律、粘度系数、流线和湍流、临界速度、雷诺数(简单问题)、斯托克斯定律和终端速度(无推导)、浮力(向上推力)、温度和掺杂对液体粘度的影响。
2.1 弹性:变形力、恢复力、弹性体和塑性体、应力和应变及其类型、胡克定律、应力应变图、杨氏模量、体积模量、刚性模量及其之间的关系(无推导)(简单问题)。 (简单问题)高温钢、铸铁、铝和混凝土的应力应变图、极限应力和断裂应力、安全系数。 2.2 表面张力:力——内聚力和粘附力、接触角、毛细管中液面的形状、毛细作用举例、表面张力之间的关系、毛细管上升和毛细管半径(无推导)(简单问题)、杂质和温度对表面张力的影响。 2.3 粘度:速度梯度、牛顿粘度定律、粘度系数、流线和湍流、临界速度、雷诺数(简单问题)、斯托克斯定律和终端速度(无推导)、浮力(向上推力)、温度和掺杂对液体粘度的影响。
摘要:本文重点介绍了许多科学论文(薄壁标本)中省略的重要模型的机械性能分析,这些模型(薄壁的标本)是用创新材料(例如PLA +青铜复合材料)印刷的,使用了融合沉积建模技术。它讨论了打印过程,标本几何形状的测量,静态拉伸强度测试以及使用扫描电子显微镜进行的显微镜检查。这项研究的发现可以用作进一步研究纤毛沉积准确性和用铜粉对基本材料进行修改以及使用细胞结构进行优化的基础材料的输入。实验结果表明,使用FDM制造的薄壁模型显示出拉伸强度的实质差异,具体取决于标本的厚度和打印方向。表明,由于层之间缺乏足够的粘附力,无法测试沿Z轴上建筑平台上的薄壁模型。
动物的身体影响神经系统如何产生行为。因此,2对感觉运动行为神经控制的详细建模需要3个身体的详细模型。在这里,我们在Mujoco Physics发动机中贡献了4种水果果蝇Melanogaster的解剖学生物力学全身模型。我们的模型是通用的,5可以在陆地和空气中模拟各种频率行为。我们通过模拟逼真的运动和步行来证明模型的6个通用力。为了支持7这些行为,我们通过流体力和8种粘附力的现象学模型扩展了穆霍科。通过数据驱动的端到端强化学习,我们证明了9这些进步使能够基于高级转向控制信号的复杂轨迹进行现实运动10的神经网络控制器的训练。我们通过训练12个模型来证明11使用视觉传感器以及重复使用预训练的通用式旋转控制器。我们的项目是一个开源平台,用于在体现的上下文中对感觉运动行为的神经控制建模。14
粘附需要分子接触,并且天然粘合剂采用机械梯度来实现完整(共形)接触以最大程度地提高粘附力。直觉上,人们期望顶层的模量越高,粘附强度越低。然而,僵硬顶层的厚度与粘附之间的关系尚不清楚。在这项工作中,我们量化了在软聚聚二甲基硅氧烷(PDMS)弹性体的厚度变化厚度的刚性玻璃状聚(PMMA)层之间的粘附。我们发现,在加载循环中,仅需要≈90nm厚的PMMA层才能将宏观粘附降低至几乎为零。可以使用Persson和Tosatti开发的保形模型来解释双层的粘附下降,在该模型中,创建保形接触的弹性能量取决于双层的厚度和机械性能。更好地理解机械梯度对粘附的影响将对粘合剂,摩擦以及胶体和颗粒物理学产生影响。
电粘附 (EA) 效应,也称为 Johnsen - Rahbek 效应 (JR 效应),由两位丹麦工程师 Frederik Alfred Johnsen 和 Knud Rahbek 在 20 世纪 20 年代首次报告。[1,2] 他们观察到,当将多孔电解质材料夹在两块高电位金属板之间时,会对其中一块金属板产生粘附力。在背面电极上施加高电压后,两种绝缘材料之间就会发生 EA 效应,并且由于极化,板会相互粘附。永久极化是由内部分子偶极子引起的,而诱导极化则是由高电场引起的。[3] 在频率相关的诱导极化中,界面极化和取向极化是 EA 效应的原因。[4,5] 施加电压时,由于等势线的形成,相反的电极会感受到麦克斯韦张量力,如图 1 所示。 θ 分量(E θ)的等势场可以用麦克斯韦方程表示,如公式(1)所示。
kynar®HSV系列PVDF粘合剂系列提供快速溶解,易于加工,高吞吐量,稳定的浆液粘度以及通过许多周期和广泛温度波动的高粘附力。通过Arkema仔细控制粘合剂树脂的功能化,可以实现较低的粘合剂负荷。这允许更高浓度的活性材料,较低的内部电阻和跨电极的高内聚力。HSV系列在电解质中还表现出非常低的肿胀,可以通过微调结晶度量身定制。这些等级提供了一流的能力保留率和电化学抗性,稳定性在宽电压范围内(高达5V li+/li)。热稳定性在此范围内也是稳定的。在电池行业有近20年的经验,我们不仅了解创新的重要性,而且了解一致的质量和供应。通过化学加工行业的全球经验多年(例如,半导体,核,饮用水,医疗保健),我们的团队在非常高的纯度PVDF方面开发了行业领先的能力。
摘要:本文介绍了一种使用聚合物纳米片作为纳米粘合剂在聚酰亚胺薄膜上制备铜层的技术。我们采用了两种功能性聚合物纳米片:一种用作粘合层,另一种用作模板层以吸附金纳米粒子,而金纳米粒子则用作化学镀的催化剂。光反应性聚合物纳米片用于增加铜层和聚酰亚胺之间的粘附力。此外,阳离子聚合物纳米片用于吸附用于化学镀铜的金催化剂。应用该技术,化学镀铜牢固地附着在聚酰亚胺薄膜上。通过对聚合物纳米片进行光刻,可以制造微米铜线。使用聚合物纳米片作为粘合剂的工艺不需要对聚酰亚胺基板进行表面改性,并且可以制造微尺度铜线而不会排放有害废物。因此,该技术可用于下一代柔性印刷电路板制造。 [doi:10.1295/polymj.PJ2006099] 关键词 柔性印刷电路板 / 聚合物纳米片 / 化学镀铜 / 纳米粘合剂 /