顾问:Steven Chu;论文:使用原子干涉法精确测量原子的光子反冲 奖学金和荣誉: 戴维森-格默奖,2022 AAAS 研究员,2019- APS 研究员,2007- 宾夕法尼亚州立大学教师学者奖章,2007 NIST 精密测量资助者,2004-07 Packard 研究员,1997-2002 斯隆研究员,1997-98 NSF CAREER 奖获得者,1996-2001 Hellman 家族教师研究员,1996 ONR 青年研究员,1995-98 DAMOP 论文奖决赛入围者,1994 NSF 博士后奖学金,1993 IBM 研究生奖学金,1988-90 斯坦福研究生奖学金,1987 丘吉尔奖学金,1986 沃伦·J·斯蒂夫勒物理奖,阿默斯特学院,1985美国阿默斯特学院 Phi Beta Kappa 会员,1984 年 学术职位: 宾夕法尼亚州立大学杰出教授,2020 年- 宾夕法尼亚州立大学物理系副主任,2011 年- 宾夕法尼亚州立大学教授,2005 年-2020 年 宾夕法尼亚州立大学副教授,2001 年-2005 年 加州大学伯克利分校助理教授,1994 年-2001 年 巴黎高等师范学院 Serge Haroche 博士后研究员,1993 年-1994 年 职业: APS DAMOP 理事,2022 年-2026 年 DAMOP 提名委员会主席,2017 年
近年来,金刚石中的氮空位 (NV) 中心已经成为一个类似原子的系统,在精密测量、量子信息处理和量子基础研究方面有许多应用。在本文中,我们重点研究了 NV 中心作为光激发和局部温度传感的函数的特性。为了证明 NV 中心对基础科学研究和技术应用的巨大潜力,对 NV − 缺陷中心,特别是在各种光激发下的了解仍然不足。在本文中,我们探讨了影响 NV − 中心 ODMR 信号的几个因素,例如微波辐射源的功率、磁场强度、光激发强度和光学系统的检测效率。用于这些实验的光谱方法称为光学检测磁共振 (ODMR)。实验旨在测量不同类型样品在不同光激发强度下NV − 中心的对比度特性,并通过能级模拟模型估计能级间的布居分布,从而得到实验结果。这些观察结果和模型为理解不同光激发下NV 中心成像的对比度分析提供了良好的理解,也为改进NV − 检测奠定了基础。之后,利用实验所得知识,采用第 3 1 章中提出的无背景成像技术,该方法被用于绘制神经元细胞培养中接种的纳米金刚石的图像。为了了解不同光激发强度下NV − 中心对比度的一般特征,对多个单晶样品进行了实验,并在第 4 章中报告了实验结果。第 5 章研究了NV − 中心的温度检测特性。介绍了一种称为跳频法的新方法来检测所需表面的局部温度变化。该方法首先在单晶金刚石样品上进行测试,然后在纳米金刚石上进行测试。最后,该技术被应用于测量局部温度变化的实际问题
系统生物学旨在从系统层面理解生物系统。由于多个领域的进步,它是生物学中一个不断发展的领域。最关键的因素是分子生物学的快速进步,以及对 DNA 序列、基因表达谱、蛋白质-蛋白质相互作用等进行全面测量的技术。随着生物数据流的不断增加,现在几乎可以认真尝试将生物系统理解为系统。处理这种高通量实验数据对计算机科学提出了很高的要求,包括数据库处理、建模、模拟和分析。半导体技术的显著进步带来了能够支持系统级分析的高性能计算设施。这不是第一次进行系统级分析的尝试;过去曾有过几项努力,其中最引人注目的是诺伯特·维纳在30多年前提出的控制论或生物控制论。由于当时对分子水平的生物过程的理解有限,大多数工作都是对生理过程的现象学分析。也有生化方法,如代谢控制分析,虽然仅限于稳态流,但它已成功用于探索生物代谢的系统级特性。系统生物学与所有其他新兴科学学科一样,建立在多种共享愿景的努力之上。然而,系统生物学与过去的尝试不同,因为我们第一次能够基于分子水平的理解在系统水平上理解生物学,并创建一个以分子水平为基础的一致知识体系。另外,需要注意的是,系统生物学是系统级研究的生物学,而不是试图将某些教条原则应用于生物学的物理学、系统科学或信息学。当该领域在未来几年成熟时,系统生物学将被描述为系统级生物学领域,广泛使用尖端技术和高度自动化的高通量精密测量,结合复杂的计算工具和分析。系统生物学显然包括实验和计算或分析研究。然而,系统生物学并不是分子生物学和计算科学的简单结合来逆转
致谢 本出版物的主要作者是: HOWARD T. CASTRUP — 是 Integrated Sciences Group (ISG) 的负责人,该公司致力于设计和开发计算机托管的科学分析和高级决策支持系统。Castrup 是校准间隔分析领域的领导者,他在测试/校准决策分析方面进行了开创性的研究。他是统计过程控制方法的作者,该方法允许在不使用更高级别的比对标准的情况下确定精密测量和测试设备的公差概率。他在加州大学洛杉矶分校获得工程学学士和博士学位,主攻固态电子学。WOODWARD G. EICKE — 是电气测量、标准和仪器领域的咨询计量学家。他在美国国家标准局 (现为 NIST) 工作了 35 年,涉及精密电气测量、电气标准、仪器仪表、自动化、测量保证和其他相关领域。Eicke 是二十多篇发表在科学和技术期刊上的论文的作者,并曾在众多专业协会和 NBS 委员会任职,参与标准编写。他就读于乔治华盛顿大学,获得工程学学士和硕士学位。JERRY L. HAYES — 是工程咨询公司 Hayes Technology 的负责人。他为多家航空航天公司和国防部提供计量和校准计划咨询服务。他曾担任海军计量工程中心的技术总监,并为全海军计划制定政策和目标。他撰写了许多关于校准和测量控制的论文,以确保校准计划和测试的质量。Hayes 曾获得过同行授予的许多奖项和荣誉。他获得了加州大学伯克利分校机械工程学士学位。JAMES L. TAYLOR — 在计算机数据采集系统项目的设计、分析和管理方面拥有二十多年的经验。他负责开展研究和开发概念设计,以及为工业和国防部进行系统设计。Taylor 发表了关于计算机数据采集系统设计技术和测量误差基础的教材,并为众多航空航天和工业公司教授测量技术和系统设计课程。他获得了应用数学和物理学学士学位以及应用数学和工程硕士学位。我们特别感谢 Robert B. Abernethy 博士提供的个人参考资料,并非常感谢以下人员的建设性贡献和批评性评论:NASA 计量和校准工作组 Robert Burdine—NASA HQ (Code Q)/MSFC Fred Kern—LaRC Troy J. Estes—WSTF Kristen Riley—KSC Mark A. Hutchinson—LaRC Herman Watts(Tom Weiss)—Stennis(Sverdrup)
房间:106 Spalding 实验室 检测和操纵压缩光用于量子计量和通信 Esme Knabe 导师:Maria Spiropulu 压缩光是一种亚泊松非经典光状态,在精密测量和量子通信等领域有广泛的应用。由于与现实世界系统的相关性,开发能够与现有光学和光子设备集成的压缩光过程至关重要。为此,该项目旨在展示使用桌面设备和集成光子学测量和操纵压缩光的相空间。这项工作的一些贡献包括但不限于压缩态的相位锁定以实现确定性相位旋转、通过将相干光与压缩光混合来产生位移压缩态、以及优化压缩光实际量子应用实验。通过量子电路假设搜索,使用量子生成对抗网络生成逼真的 LHC QCD 模拟 Yiyi Cai 导师:Maria Spiropulu、Jean-Roch Vlimant 和 Samantha Davis 经典生成模型已被证明有望成为替代生成模型,可以取代部分或全部对撞机数据的详细模拟链,尤其是在 LHC 中。由于初态希尔伯特空间大小的指数缩放和量子系统的内在随机性,量子-经典混合生成模型可以提供更高的精度和性能。这种方法的一个局限性是可以任意选择所用量子电路的假设。我们研究了量子-经典生成对抗模型的性能,以使用变分量子电路作为模型的生成部分来模拟 LHC 上强子喷流的特征,并进一步搜索电路假设空间以找到性能最佳的电路。我们对强子喷流数据集中量子-经典混合生成对抗模型的性能得出结论,并对此类方法在 LHC 上的可用性进行了展望。时间箱量子密钥分发密钥交换 Ismail Elmengad 导师:Maria Spiropulu 和 Anthony LaTorre 量子密钥分发 (QKD) 使双方 Alice 和 Bob 能够实现信息论安全通信。这意味着无论多少计算资源都无法让第三方访问 Alice 和 Bob 的通信。量子比特可以用几种方式编码。该项目将使用时间箱协议来交换量子比特。光子要么在时间基础上准备,它们落入早期或晚期时间箱,类似于经典信息中的 0 和 1,要么在相位基础上准备,这是早期和晚期状态的叠加。通过表征影响量子比特错误率 (QBER) 的各种因素,例如暗计数、脉冲宽度、QBER 稳定性,相位调制等。我们希望通过光纤介质实现任意长度的有效密钥交换。QKD 是通过光纤和视距自由空间环境进行安全通信的一个令人兴奋的前景。用于量子网络的时间箱编码光子量子比特的 Greenberger-Horne-Zeilinger (GHZ) 状态的生成 Nassim Tavakoli 导师:Maria Spiropulu、Samantha Davis、Raju Valivarthi 和 Nikolai Lauk 量子纠缠是量子信息应用(如量子计算、通信和计量)的重要资源,有望实现计算加速、信息论安全通信和增强的传感能力。该项目将重点研究由三个纠缠粒子组成的 GHZ 状态。我们旨在使用光纤耦合元件、体非线性和最先进的超导纳米线单光子探测器(SNSPD)生成时间箱量子比特的 GHZ 状态。纠缠光子可以通过自发参数下变频和连续波泵浦光后选择产生。这些“飞行量子比特”通过基于到达时间的时间箱技术传输编码的信息。这一演示将是迈向现实世界量子网络的重要一步,这是一种更有效地生成量子隐形传态所需状态的方法。